Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
@@ -1,130 +1,129 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
from sklearn.decomposition import TruncatedSVD
|
4 |
-
import time
|
5 |
-
import gradio as gr
|
6 |
-
from scipy.sparse import csr_matrix
|
7 |
-
|
8 |
-
class MatrixFactorization:
|
9 |
-
def __init__(self, n_factors=50):
|
10 |
-
self.n_factors = n_factors
|
11 |
-
self.model = TruncatedSVD(n_components=n_factors, random_state=42)
|
12 |
-
self.user_title_matrix = None
|
13 |
-
self.titles_df = None
|
14 |
-
self.title_choices = None
|
15 |
-
self.columns = None
|
16 |
-
|
17 |
-
def fit(self, df):
|
18 |
-
print("Training model...")
|
19 |
-
start_time = time.time()
|
20 |
-
|
21 |
-
# Get top 10000 songs by play count for better performance
|
22 |
-
top_songs = df.groupby(['title', 'artist_name'])['play_count'].sum().reset_index()
|
23 |
-
top_songs = top_songs.nlargest(10000, 'play_count')
|
24 |
-
|
25 |
-
# Filter original dataframe
|
26 |
-
df_filtered = df[df['title'].isin(top_songs['title'])]
|
27 |
-
|
28 |
-
# Pre-compute formatted title choices for dropdown
|
29 |
-
self.title_choices = df_filtered.groupby(['title', 'artist_name', 'release'])['year'].first().reset_index()
|
30 |
-
self.title_choices['display'] = self.title_choices.apply(
|
31 |
-
lambda x: f"{x['title']} β’ by {x['artist_name']}" +
|
32 |
-
(f" [{x['release']}, {int(x['year'])}]" if pd.notna(x['year']) and pd.notna(x['release'])
|
33 |
-
else f" [{int(x['year'])}]" if pd.notna(x['year'])
|
34 |
-
else f" [{x['release']}]" if pd.notna(x['release'])
|
35 |
-
else ""),
|
36 |
-
axis=1
|
37 |
-
)
|
38 |
-
|
39 |
-
# Create pivot table
|
40 |
-
pivot = pd.pivot_table(
|
41 |
-
df_filtered,
|
42 |
-
values='play_count',
|
43 |
-
index='user',
|
44 |
-
columns='title',
|
45 |
-
fill_value=0
|
46 |
-
)
|
47 |
-
self.columns = pivot.columns
|
48 |
-
|
49 |
-
# Use sparse matrix for efficiency
|
50 |
-
self.user_title_matrix = csr_matrix(pivot.values)
|
51 |
-
|
52 |
-
# Train model
|
53 |
-
self.user_vectors = self.model.fit_transform(self.user_title_matrix)
|
54 |
-
self.item_vectors = self.model.components_
|
55 |
-
|
56 |
-
print(f"Training completed in {time.time() - start_time:.2f} seconds")
|
57 |
-
print(f"Number of songs available: {len(self.title_choices)}")
|
58 |
-
|
59 |
-
def get_recommendations_from_titles(self,
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
return demo
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.decomposition import TruncatedSVD
|
4 |
+
import time
|
5 |
+
import gradio as gr
|
6 |
+
from scipy.sparse import csr_matrix
|
7 |
+
|
8 |
+
class MatrixFactorization:
|
9 |
+
def __init__(self, n_factors=50):
|
10 |
+
self.n_factors = n_factors
|
11 |
+
self.model = TruncatedSVD(n_components=n_factors, random_state=42)
|
12 |
+
self.user_title_matrix = None
|
13 |
+
self.titles_df = None
|
14 |
+
self.title_choices = None
|
15 |
+
self.columns = None
|
16 |
+
|
17 |
+
def fit(self, df):
|
18 |
+
print("Training model...")
|
19 |
+
start_time = time.time()
|
20 |
+
|
21 |
+
# Get top 10000 songs by play count for better performance
|
22 |
+
top_songs = df.groupby(['title', 'artist_name'])['play_count'].sum().reset_index()
|
23 |
+
top_songs = top_songs.nlargest(10000, 'play_count')
|
24 |
+
|
25 |
+
# Filter original dataframe
|
26 |
+
df_filtered = df[df['title'].isin(top_songs['title'])]
|
27 |
+
|
28 |
+
# Pre-compute formatted title choices for dropdown
|
29 |
+
self.title_choices = df_filtered.groupby(['title', 'artist_name', 'release'])['year'].first().reset_index()
|
30 |
+
self.title_choices['display'] = self.title_choices.apply(
|
31 |
+
lambda x: f"{x['title']} β’ by {x['artist_name']}" +
|
32 |
+
(f" [{x['release']}, {int(x['year'])}]" if pd.notna(x['year']) and pd.notna(x['release'])
|
33 |
+
else f" [{int(x['year'])}]" if pd.notna(x['year'])
|
34 |
+
else f" [{x['release']}]" if pd.notna(x['release'])
|
35 |
+
else ""),
|
36 |
+
axis=1
|
37 |
+
)
|
38 |
+
|
39 |
+
# Create pivot table
|
40 |
+
pivot = pd.pivot_table(
|
41 |
+
df_filtered,
|
42 |
+
values='play_count',
|
43 |
+
index='user',
|
44 |
+
columns='title',
|
45 |
+
fill_value=0
|
46 |
+
)
|
47 |
+
self.columns = pivot.columns
|
48 |
+
|
49 |
+
# Use sparse matrix for efficiency
|
50 |
+
self.user_title_matrix = csr_matrix(pivot.values)
|
51 |
+
|
52 |
+
# Train model
|
53 |
+
self.user_vectors = self.model.fit_transform(self.user_title_matrix)
|
54 |
+
self.item_vectors = self.model.components_
|
55 |
+
|
56 |
+
print(f"Training completed in {time.time() - start_time:.2f} seconds")
|
57 |
+
print(f"Number of songs available: {len(self.title_choices)}")
|
58 |
+
|
59 |
+
def get_recommendations_from_titles(self, selected_display_titles, n_recommendations=5):
|
60 |
+
try:
|
61 |
+
actual_titles = [display.split(" β’ by ")[0] for display in selected_display_titles]
|
62 |
+
|
63 |
+
title_to_idx = {title: idx for idx, title in enumerate(self.user_title_matrix.columns)}
|
64 |
+
selected_indices = [title_to_idx[title] for title in actual_titles]
|
65 |
+
|
66 |
+
user_vector = np.zeros((1, self.n_factors))
|
67 |
+
for idx in selected_indices:
|
68 |
+
user_vector += self.item_vectors[:, idx].reshape(1, -1)
|
69 |
+
user_vector = user_vector / len(selected_indices)
|
70 |
+
|
71 |
+
predicted_ratings = np.dot(user_vector, self.item_vectors)
|
72 |
+
predicted_ratings = predicted_ratings.flatten()
|
73 |
+
|
74 |
+
titles = self.user_title_matrix.columns
|
75 |
+
title_scores = [(title, score) for title, score in zip(titles, predicted_ratings)
|
76 |
+
if title not in actual_titles]
|
77 |
+
|
78 |
+
recommendations = sorted(title_scores, key=lambda x: x[1], reverse=True)[:n_recommendations]
|
79 |
+
|
80 |
+
results = []
|
81 |
+
for title, score in recommendations:
|
82 |
+
row = self.titles_df.loc[title]
|
83 |
+
confidence = 30 + (score * 70)
|
84 |
+
results.append([
|
85 |
+
title,
|
86 |
+
row['artist_name'],
|
87 |
+
int(row['year']) if pd.notna(row['year']) else None,
|
88 |
+
f"{min(max(confidence, 30), 100):.2f}%"
|
89 |
+
])
|
90 |
+
|
91 |
+
return results
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Error in recommendations: {str(e)}")
|
94 |
+
return []
|
95 |
+
|
96 |
+
def create_gradio_interface(mf_model):
|
97 |
+
with gr.Blocks() as demo:
|
98 |
+
gr.Markdown("""
|
99 |
+
# π΅ Music Recommendation System πΆ
|
100 |
+
|
101 |
+
### Instructions:
|
102 |
+
1. π Search songs using title, artist, album, or year
|
103 |
+
2. π§ Select up to 5 songs from the dropdown
|
104 |
+
3. π Click 'Get Recommendations' for similar songs
|
105 |
+
4. π Results show song details with confidence scores
|
106 |
+
""")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
input_songs = gr.Dropdown(
|
110 |
+
choices=sorted(mf_model.title_choices['display'].tolist()),
|
111 |
+
label="Select songs (up to 5)",
|
112 |
+
multiselect=True,
|
113 |
+
max_choices=5,
|
114 |
+
filterable=True
|
115 |
+
)
|
116 |
+
with gr.Column():
|
117 |
+
recommend_btn = gr.Button("Get Recommendations", size="lg")
|
118 |
+
output_table = gr.DataFrame(
|
119 |
+
headers=["Song", "Artist", "Year", "Confidence"],
|
120 |
+
label="Recommendations"
|
121 |
+
)
|
122 |
+
|
123 |
+
recommend_btn.click(
|
124 |
+
fn=mf_model.get_recommendations_from_titles,
|
125 |
+
inputs=input_songs,
|
126 |
+
outputs=output_table
|
127 |
+
)
|
128 |
+
|
|
|
129 |
return demo
|