import gradio as gr import pandas as pd import numpy as np from sklearn.decomposition import TruncatedSVD import time from model import MatrixFactorization, create_gradio_interface # Load the preprocessed data df = pd.read_csv('data.csv') # Initialize and train the model mf_recommender = MatrixFactorization(n_factors=100) mf_recommender.fit(df) # Create and launch the Gradio interface demo = create_gradio_interface(mf_recommender) demo.launch()