import gradio as gr import pandas as pd import numpy as np from sklearn.decomposition import TruncatedSVD import time from model import MatrixFactorization, create_gradio_interface try: print("Loading data...") df = pd.read_csv('data.csv') print("Initializing model...") mf_recommender = MatrixFactorization(n_factors=100) mf_recommender.fit(df) print("Creating interface...") demo = create_gradio_interface(mf_recommender) if demo is not None: demo.launch(share=False) else: print("Error: Interface creation failed") except Exception as e: print(f"Error: {str(e)}")