GovindRaj commited on
Commit
11eaf9f
·
verified ·
1 Parent(s): 29d7f82

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -5
app.py CHANGED
@@ -10,7 +10,7 @@ from huggingface_hub import HfApi, HfFolder
10
  DB_FAISS_PATH = 'vectorstore/db_faiss'
11
  DATASET_REPO = "GovindRaj/faiss-vectorstore" # Your Hugging Face Dataset ID
12
 
13
- # Function to create FAISS vector DB and upload to Hugging Face
14
  def create_vector_db(uploaded_files):
15
  # Create a temporary directory
16
  with tempfile.TemporaryDirectory() as temp_dir:
@@ -42,8 +42,17 @@ def create_vector_db(uploaded_files):
42
  model_kwargs={'device': 'cpu'}
43
  )
44
 
45
- # Create and save FAISS database locally
46
- db = FAISS.from_documents(texts, embeddings)
 
 
 
 
 
 
 
 
 
47
  db.save_local(DB_FAISS_PATH)
48
 
49
  # Retrieve the token from environment variables (Hugging Face Secrets)
@@ -52,7 +61,7 @@ def create_vector_db(uploaded_files):
52
  if not hf_token:
53
  raise ValueError("Hugging Face token not found. Please set the token in Hugging Face secrets.")
54
 
55
- # Push the vector database to Hugging Face Dataset
56
  HfFolder.save_token(hf_token)
57
  api = HfApi()
58
  api.upload_folder(
@@ -85,4 +94,4 @@ def main():
85
  st.error(f"An error occurred: {str(e)}")
86
 
87
  if __name__ == "__main__":
88
- main()
 
10
  DB_FAISS_PATH = 'vectorstore/db_faiss'
11
  DATASET_REPO = "GovindRaj/faiss-vectorstore" # Your Hugging Face Dataset ID
12
 
13
+ # Function to create or update FAISS vector DB and upload to Hugging Face
14
  def create_vector_db(uploaded_files):
15
  # Create a temporary directory
16
  with tempfile.TemporaryDirectory() as temp_dir:
 
42
  model_kwargs={'device': 'cpu'}
43
  )
44
 
45
+ # Check if FAISS vectorstore already exists
46
+ if os.path.exists(DB_FAISS_PATH):
47
+ # Load existing FAISS database
48
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings)
49
+ # Add new documents to the existing database
50
+ db.add_documents(texts)
51
+ else:
52
+ # Create a new FAISS database if none exists
53
+ db = FAISS.from_documents(texts, embeddings)
54
+
55
+ # Save the updated FAISS database locally
56
  db.save_local(DB_FAISS_PATH)
57
 
58
  # Retrieve the token from environment variables (Hugging Face Secrets)
 
61
  if not hf_token:
62
  raise ValueError("Hugging Face token not found. Please set the token in Hugging Face secrets.")
63
 
64
+ # Push the updated vector database to Hugging Face Dataset
65
  HfFolder.save_token(hf_token)
66
  api = HfApi()
67
  api.upload_folder(
 
94
  st.error(f"An error occurred: {str(e)}")
95
 
96
  if __name__ == "__main__":
97
+ main()