Spaces:
Runtime error
Runtime error
Commit
·
4243b3c
1
Parent(s):
7f9afde
app.py
Browse files
app.py
CHANGED
@@ -77,37 +77,6 @@ valid_dir = 'dogImages/valid'
|
|
77 |
|
78 |
train_folder = datasets.ImageFolder(train_dir)
|
79 |
|
80 |
-
# Transforms for the training, validation, and testing sets
|
81 |
-
#train_transforms = transforms.Compose([
|
82 |
-
# transforms.RandomRotation(40),
|
83 |
-
# transforms.RandomResizedCrop(224),
|
84 |
-
# transforms.RandomHorizontalFlip(),
|
85 |
-
# transforms.ToTensor(),
|
86 |
-
# transforms.Normalize([0.485, 0.456, 0.406],
|
87 |
-
# [0.229, 0.224, 0.225])
|
88 |
-
#])
|
89 |
-
|
90 |
-
#valid_transforms = transforms.Compose([transforms.Resize(224),
|
91 |
-
# transforms.CenterCrop(224),
|
92 |
-
# transforms.ToTensor(),
|
93 |
-
# transforms.Normalize([0.485, 0.456, 0.406],
|
94 |
-
# [0.229, 0.224, 0.225])])
|
95 |
-
#test_transforms = transforms.Compose([transforms.Resize(224),
|
96 |
-
# transforms.CenterCrop(224),
|
97 |
-
# transforms.ToTensor(),
|
98 |
-
# transforms.Normalize([0.485, 0.456, 0.406],
|
99 |
-
# [0.229, 0.224, 0.225])])
|
100 |
-
|
101 |
-
# Dataloaders
|
102 |
-
#train_folder = datasets.ImageFolder(train_dir, transform=train_transforms)
|
103 |
-
#valid_folder = datasets.ImageFolder(valid_dir, transform=valid_transforms)
|
104 |
-
#test_folder = datasets.ImageFolder(test_dir, transform=test_transforms)
|
105 |
-
|
106 |
-
# DataLoaders
|
107 |
-
#train_dataloaders = torch.utils.data.DataLoader(train_folder, batch_size=65, shuffle=True)
|
108 |
-
#valid_dataloaders = torch.utils.data.DataLoader(valid_folder, batch_size=35, shuffle=True)
|
109 |
-
#test_dataloaders = torch.utils.data.DataLoader(test_folder, batch_size= 68, shuffle=True)
|
110 |
-
|
111 |
model = models.resnet152(pretrained=True)
|
112 |
|
113 |
# Freeze training for all "feature" layers -> turning off computing gradient for each parameter
|
@@ -196,13 +165,13 @@ demo = gr.Blocks()
|
|
196 |
with demo:
|
197 |
gr.Markdown(
|
198 |
"""
|
199 |
-
|
|
|
|
|
200 |
|
201 |
Enter the image of a dog or human and check its resembling breed...
|
202 |
-
|
203 |
-
If uploaded image is of
|
204 |
-
|
205 |
-
Else If uploaded image is of Human: it will give its resembling breed of dog
|
206 |
""")
|
207 |
|
208 |
inp = gr.Image(label='input image of dog/human', type='pil')
|
|
|
77 |
|
78 |
train_folder = datasets.ImageFolder(train_dir)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
model = models.resnet152(pretrained=True)
|
81 |
|
82 |
# Freeze training for all "feature" layers -> turning off computing gradient for each parameter
|
|
|
165 |
with demo:
|
166 |
gr.Markdown(
|
167 |
"""
|
168 |
+
# <center>Breed Finder !</center>
|
169 |
+
|
170 |
+
Find the breed for dog image or resembling breed for human Image!
|
171 |
|
172 |
Enter the image of a dog or human and check its resembling breed...
|
173 |
+
1. If uploaded image is of Dog : it will give its Breed
|
174 |
+
2. Else If uploaded image is of Human: it will give its resembling breed of dog
|
|
|
|
|
175 |
""")
|
176 |
|
177 |
inp = gr.Image(label='input image of dog/human', type='pil')
|