Spaces:
Runtime error
Runtime error
Zengyf-CVer
commited on
Commit
·
53f1c15
1
Parent(s):
e351b90
v04 update
Browse files- .gitignore +7 -1
- app.py +37 -19
- packages.txt +3 -0
.gitignore
CHANGED
@@ -13,8 +13,12 @@
|
|
13 |
|
14 |
# 日志格式
|
15 |
*.log
|
16 |
-
*.
|
17 |
*.txt
|
|
|
|
|
|
|
|
|
18 |
*.csv
|
19 |
|
20 |
# 参数文件
|
@@ -32,6 +36,7 @@
|
|
32 |
*.ttf
|
33 |
*.otf
|
34 |
|
|
|
35 |
*.pt
|
36 |
*.db
|
37 |
|
@@ -41,5 +46,6 @@
|
|
41 |
!cls_name/*
|
42 |
!model_config/*
|
43 |
!img_example/*
|
|
|
44 |
|
45 |
app copy.py
|
|
|
13 |
|
14 |
# 日志格式
|
15 |
*.log
|
16 |
+
*.datas
|
17 |
*.txt
|
18 |
+
|
19 |
+
# 生成文件
|
20 |
+
*.pdf
|
21 |
+
*.xlsx
|
22 |
*.csv
|
23 |
|
24 |
# 参数文件
|
|
|
36 |
*.ttf
|
37 |
*.otf
|
38 |
|
39 |
+
# 模型文件
|
40 |
*.pt
|
41 |
*.db
|
42 |
|
|
|
46 |
!cls_name/*
|
47 |
!model_config/*
|
48 |
!img_example/*
|
49 |
+
!packages.txt
|
50 |
|
51 |
app copy.py
|
app.py
CHANGED
@@ -133,16 +133,20 @@ def yaml_csv(file_path, file_tag):
|
|
133 |
|
134 |
|
135 |
# model loading
|
136 |
-
def model_loading(model_name, device, opt=[
|
137 |
-
|
138 |
-
#
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
|
147 |
return model
|
148 |
|
@@ -174,13 +178,13 @@ def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt, obj_cls_index,
|
|
174 |
|
175 |
if "label" in opt:
|
176 |
text_w, text_h = textFont.getsize(countdown_msg) # Label size
|
177 |
-
|
178 |
img_pil.rectangle(
|
179 |
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
|
180 |
fill=color_list[obj_cls_index],
|
181 |
outline=color_list[obj_cls_index],
|
182 |
) # label background
|
183 |
-
|
184 |
img_pil.multiline_text(
|
185 |
(xyxy[0], xyxy[1]),
|
186 |
countdown_msg,
|
@@ -199,7 +203,7 @@ def color_set(cls_num):
|
|
199 |
color = tuple(np.random.choice(range(256), size=3))
|
200 |
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
|
201 |
color_list.append(color)
|
202 |
-
|
203 |
return color_list
|
204 |
|
205 |
|
@@ -218,9 +222,15 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
218 |
if model_name_tmp != model_name:
|
219 |
# Model judgment to avoid repeated loading
|
220 |
model_name_tmp = model_name
|
|
|
221 |
model = model_loading(model_name_tmp, device, opt)
|
222 |
elif device_tmp != device:
|
|
|
223 |
device_tmp = device
|
|
|
|
|
|
|
|
|
224 |
model = model_loading(model_name_tmp, device, opt)
|
225 |
|
226 |
# -------------Model tuning -------------
|
@@ -229,12 +239,12 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
229 |
model.max_det = int(max_num) # Maximum number of detection frames
|
230 |
model.classes = model_cls # model classes
|
231 |
|
232 |
-
color_list = color_set(len(model_cls_name_cp))
|
233 |
|
234 |
img_size = img.size # frame size
|
235 |
|
236 |
results = model(img, size=infer_size) # detection
|
237 |
-
|
238 |
# ----------------目标裁剪----------------
|
239 |
crops = results.crop(save=False)
|
240 |
img_crops = []
|
@@ -243,7 +253,7 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
243 |
|
244 |
# Data Frame
|
245 |
dataframe = results.pandas().xyxy[0].round(2)
|
246 |
-
|
247 |
det_csv = "./Det_Report.csv"
|
248 |
det_excel = "./Det_Report.xlsx"
|
249 |
|
@@ -251,7 +261,7 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
251 |
dataframe.to_csv(det_csv, index=False)
|
252 |
else:
|
253 |
det_csv = None
|
254 |
-
|
255 |
if "excel" in opt:
|
256 |
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
257 |
else:
|
@@ -363,9 +373,15 @@ def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, mo
|
|
363 |
if model_name_tmp != model_name:
|
364 |
# Model judgment to avoid repeated loading
|
365 |
model_name_tmp = model_name
|
|
|
366 |
model = model_loading(model_name_tmp, device, opt)
|
367 |
elif device_tmp != device:
|
|
|
368 |
device_tmp = device
|
|
|
|
|
|
|
|
|
369 |
model = model_loading(model_name_tmp, device, opt)
|
370 |
|
371 |
# -------------Model tuning -------------
|
@@ -374,7 +390,7 @@ def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, mo
|
|
374 |
model.max_det = int(max_num) # Maximum number of detection frames
|
375 |
model.classes = model_cls # model classes
|
376 |
|
377 |
-
color_list = color_set(len(model_cls_name_cp))
|
378 |
|
379 |
# ----------------Load fonts----------------
|
380 |
yaml_index = cls_name.index(".yaml")
|
@@ -551,7 +567,9 @@ def main(args):
|
|
551 |
outputs_video = gr.Video(format='mp4', label="Detection video")
|
552 |
|
553 |
# output parameters
|
554 |
-
outputs_img_list = [
|
|
|
|
|
555 |
outputs_video_list = [outputs_video]
|
556 |
|
557 |
# title
|
|
|
133 |
|
134 |
|
135 |
# model loading
|
136 |
+
def model_loading(model_name, device, opt=[]):
|
137 |
+
|
138 |
+
# 加载本地模型
|
139 |
+
try:
|
140 |
+
# load model
|
141 |
+
model = torch.hub.load(model_path,
|
142 |
+
model_name,
|
143 |
+
force_reload=[True if "refresh_yolov5" in opt else False][0],
|
144 |
+
device=device,
|
145 |
+
_verbose=False)
|
146 |
+
except Exception as e:
|
147 |
+
print(e)
|
148 |
+
else:
|
149 |
+
print(f"🚀 welcome to {GYD_VERSION},{model_name} loaded successfully!")
|
150 |
|
151 |
return model
|
152 |
|
|
|
178 |
|
179 |
if "label" in opt:
|
180 |
text_w, text_h = textFont.getsize(countdown_msg) # Label size
|
181 |
+
|
182 |
img_pil.rectangle(
|
183 |
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
|
184 |
fill=color_list[obj_cls_index],
|
185 |
outline=color_list[obj_cls_index],
|
186 |
) # label background
|
187 |
+
|
188 |
img_pil.multiline_text(
|
189 |
(xyxy[0], xyxy[1]),
|
190 |
countdown_msg,
|
|
|
203 |
color = tuple(np.random.choice(range(256), size=3))
|
204 |
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
|
205 |
color_list.append(color)
|
206 |
+
|
207 |
return color_list
|
208 |
|
209 |
|
|
|
222 |
if model_name_tmp != model_name:
|
223 |
# Model judgment to avoid repeated loading
|
224 |
model_name_tmp = model_name
|
225 |
+
print(f"Loading model {model_name_tmp}......")
|
226 |
model = model_loading(model_name_tmp, device, opt)
|
227 |
elif device_tmp != device:
|
228 |
+
# Device judgment to avoid repeated loading
|
229 |
device_tmp = device
|
230 |
+
print(f"Loading model {model_name_tmp}......")
|
231 |
+
model = model_loading(model_name_tmp, device, opt)
|
232 |
+
else:
|
233 |
+
print(f"Loading model {model_name_tmp}......")
|
234 |
model = model_loading(model_name_tmp, device, opt)
|
235 |
|
236 |
# -------------Model tuning -------------
|
|
|
239 |
model.max_det = int(max_num) # Maximum number of detection frames
|
240 |
model.classes = model_cls # model classes
|
241 |
|
242 |
+
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
243 |
|
244 |
img_size = img.size # frame size
|
245 |
|
246 |
results = model(img, size=infer_size) # detection
|
247 |
+
|
248 |
# ----------------目标裁剪----------------
|
249 |
crops = results.crop(save=False)
|
250 |
img_crops = []
|
|
|
253 |
|
254 |
# Data Frame
|
255 |
dataframe = results.pandas().xyxy[0].round(2)
|
256 |
+
|
257 |
det_csv = "./Det_Report.csv"
|
258 |
det_excel = "./Det_Report.xlsx"
|
259 |
|
|
|
261 |
dataframe.to_csv(det_csv, index=False)
|
262 |
else:
|
263 |
det_csv = None
|
264 |
+
|
265 |
if "excel" in opt:
|
266 |
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
267 |
else:
|
|
|
373 |
if model_name_tmp != model_name:
|
374 |
# Model judgment to avoid repeated loading
|
375 |
model_name_tmp = model_name
|
376 |
+
print(f"Loading model {model_name_tmp}......")
|
377 |
model = model_loading(model_name_tmp, device, opt)
|
378 |
elif device_tmp != device:
|
379 |
+
# Device judgment to avoid repeated loading
|
380 |
device_tmp = device
|
381 |
+
print(f"Loading model {model_name_tmp}......")
|
382 |
+
model = model_loading(model_name_tmp, device, opt)
|
383 |
+
else:
|
384 |
+
print(f"Loading model {model_name_tmp}......")
|
385 |
model = model_loading(model_name_tmp, device, opt)
|
386 |
|
387 |
# -------------Model tuning -------------
|
|
|
390 |
model.max_det = int(max_num) # Maximum number of detection frames
|
391 |
model.classes = model_cls # model classes
|
392 |
|
393 |
+
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
394 |
|
395 |
# ----------------Load fonts----------------
|
396 |
yaml_index = cls_name.index(".yaml")
|
|
|
567 |
outputs_video = gr.Video(format='mp4', label="Detection video")
|
568 |
|
569 |
# output parameters
|
570 |
+
outputs_img_list = [
|
571 |
+
outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf,
|
572 |
+
outputs_csv, outputs_excel]
|
573 |
outputs_video_list = [outputs_video]
|
574 |
|
575 |
# title
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
x264
|
3 |
+
libx264-dev
|