Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ download_datasets_from_github(os.getcwd())
|
|
11 |
|
12 |
dataset_items = {dataset.name: dataset for dataset in ABSADatasetList()}
|
13 |
|
|
|
14 |
def get_example(dataset):
|
15 |
task = 'apc'
|
16 |
dataset_file = detect_infer_dataset(dataset_items[dataset], task)
|
@@ -36,7 +37,7 @@ aspect_extractor = ATEPCCheckpointManager.get_aspect_extractor(checkpoint='multi
|
|
36 |
|
37 |
def perform_inference(text, dataset):
|
38 |
if not text:
|
39 |
-
text = dataset_dict[dataset][random.randint(0, len(dataset_dict[dataset])-1)]
|
40 |
|
41 |
result = aspect_extractor.extract_aspect(inference_source=[text],
|
42 |
pred_sentiment=True)
|
@@ -56,17 +57,18 @@ demo = gr.Blocks()
|
|
56 |
|
57 |
with demo:
|
58 |
gr.Markdown("# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>")
|
59 |
-
gr.Markdown("### Repo: [PyABSA](https://github.com/yangheng95/PyABSA)
|
60 |
-
|
61 |
[](https://pepy.tech/project/pyabsa)
|
62 |
[](https://pepy.tech/project/pyabsa)
|
63 |
"""
|
64 |
)
|
65 |
gr.Markdown("Your input text should be no more than 80 words, that's the longest text we used in training. However, you can try longer text in self-training ")
|
|
|
66 |
output_dfs = []
|
67 |
with gr.Row():
|
68 |
with gr.Column():
|
69 |
-
input_sentence = gr.Textbox(placeholder='Leave blank
|
70 |
gr.Markdown("You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)")
|
71 |
dataset_ids = gr.Radio(choices=[dataset.name for dataset in ABSADatasetList()[:-1]], value='Laptop14', label="Datasets")
|
72 |
inference_button = gr.Button("Let's go!")
|
|
|
11 |
|
12 |
dataset_items = {dataset.name: dataset for dataset in ABSADatasetList()}
|
13 |
|
14 |
+
|
15 |
def get_example(dataset):
|
16 |
task = 'apc'
|
17 |
dataset_file = detect_infer_dataset(dataset_items[dataset], task)
|
|
|
37 |
|
38 |
def perform_inference(text, dataset):
|
39 |
if not text:
|
40 |
+
text = dataset_dict[dataset][random.randint(0, len(dataset_dict[dataset]) - 1)]
|
41 |
|
42 |
result = aspect_extractor.extract_aspect(inference_source=[text],
|
43 |
pred_sentiment=True)
|
|
|
57 |
|
58 |
with demo:
|
59 |
gr.Markdown("# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>")
|
60 |
+
gr.Markdown("""### Repo: [PyABSA](https://github.com/yangheng95/PyABSA)
|
61 |
+
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
62 |
[](https://pepy.tech/project/pyabsa)
|
63 |
[](https://pepy.tech/project/pyabsa)
|
64 |
"""
|
65 |
)
|
66 |
gr.Markdown("Your input text should be no more than 80 words, that's the longest text we used in training. However, you can try longer text in self-training ")
|
67 |
+
gr.Markdown("**You don't need to split each Chinese (Korean, etc.) token as the provided, just input the natural language text.**")
|
68 |
output_dfs = []
|
69 |
with gr.Row():
|
70 |
with gr.Column():
|
71 |
+
input_sentence = gr.Textbox(placeholder='Leave this box blank and choose a dataset will give you a random example...', label="Example:")
|
72 |
gr.Markdown("You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)")
|
73 |
dataset_ids = gr.Radio(choices=[dataset.name for dataset in ABSADatasetList()[:-1]], value='Laptop14', label="Datasets")
|
74 |
inference_button = gr.Button("Let's go!")
|