Spaces:
Running
Running
Update
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.21.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -10,22 +10,7 @@ import gradio as gr
|
|
10 |
|
11 |
from model import AppDetModel, AppPoseModel
|
12 |
|
13 |
-
DESCRIPTION = '
|
14 |
-
|
15 |
-
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
|
16 |
-
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" />'
|
17 |
-
|
18 |
-
|
19 |
-
def parse_args() -> argparse.Namespace:
|
20 |
-
parser = argparse.ArgumentParser()
|
21 |
-
parser.add_argument('--device', type=str, default='cpu')
|
22 |
-
parser.add_argument('--theme', type=str)
|
23 |
-
parser.add_argument('--share', action='store_true')
|
24 |
-
parser.add_argument('--port', type=int)
|
25 |
-
parser.add_argument('--disable-queue',
|
26 |
-
dest='enable_queue',
|
27 |
-
action='store_false')
|
28 |
-
return parser.parse_args()
|
29 |
|
30 |
|
31 |
def set_example_image(example: list) -> dict:
|
@@ -39,161 +24,140 @@ def extract_tar() -> None:
|
|
39 |
f.extractall('mmdet_configs')
|
40 |
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
with gr.
|
51 |
-
gr.Markdown(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
with gr.
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
vis_det_score_threshold = gr.Slider(
|
76 |
-
0,
|
77 |
-
1,
|
78 |
-
step=0.05,
|
79 |
-
value=0.5,
|
80 |
-
label='Visualization Score Threshold')
|
81 |
-
with gr.Row():
|
82 |
-
redraw_det_button = gr.Button(value='Redraw')
|
83 |
-
|
84 |
-
with gr.Row():
|
85 |
-
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
|
86 |
-
example_images = gr.Dataset(components=[input_image],
|
87 |
-
samples=[[path.as_posix()]
|
88 |
-
for path in paths])
|
89 |
-
|
90 |
-
with gr.Box():
|
91 |
-
gr.Markdown('## Step 2')
|
92 |
-
with gr.Row():
|
93 |
-
with gr.Column():
|
94 |
-
with gr.Row():
|
95 |
-
pose_model_name = gr.Dropdown(
|
96 |
-
list(pose_model.MODEL_DICT.keys()),
|
97 |
-
value=pose_model.model_name,
|
98 |
-
label='Pose Model')
|
99 |
-
det_score_threshold = gr.Slider(
|
100 |
-
0,
|
101 |
-
1,
|
102 |
step=0.05,
|
103 |
-
value=0.5
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
step=1,
|
124 |
-
value=
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
141 |
inputs=[
|
142 |
-
detector_name,
|
143 |
input_image,
|
|
|
144 |
vis_det_score_threshold,
|
145 |
],
|
146 |
-
outputs=
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
162 |
inputs=[
|
163 |
-
pose_model_name,
|
164 |
input_image,
|
165 |
-
|
166 |
-
det_score_threshold,
|
167 |
vis_kpt_score_threshold,
|
168 |
vis_dot_radius,
|
169 |
vis_line_thickness,
|
170 |
],
|
171 |
-
outputs=
|
172 |
-
|
173 |
-
|
174 |
-
])
|
175 |
-
redraw_pose_button.click(fn=pose_model.visualize_pose_results,
|
176 |
-
inputs=[
|
177 |
-
input_image,
|
178 |
-
pose_preds,
|
179 |
-
vis_kpt_score_threshold,
|
180 |
-
vis_dot_radius,
|
181 |
-
vis_line_thickness,
|
182 |
-
],
|
183 |
-
outputs=pose_visualization)
|
184 |
-
|
185 |
-
example_images.click(
|
186 |
-
fn=set_example_image,
|
187 |
-
inputs=example_images,
|
188 |
-
outputs=input_image,
|
189 |
-
)
|
190 |
-
|
191 |
-
demo.launch(
|
192 |
-
enable_queue=args.enable_queue,
|
193 |
-
server_port=args.port,
|
194 |
-
share=args.share,
|
195 |
-
)
|
196 |
-
|
197 |
-
|
198 |
-
if __name__ == '__main__':
|
199 |
-
main()
|
|
|
10 |
|
11 |
from model import AppDetModel, AppPoseModel
|
12 |
|
13 |
+
DESCRIPTION = '# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
def set_example_image(example: list) -> dict:
|
|
|
24 |
f.extractall('mmdet_configs')
|
25 |
|
26 |
|
27 |
+
extract_tar()
|
28 |
+
|
29 |
+
det_model = AppDetModel()
|
30 |
+
pose_model = AppPoseModel()
|
31 |
+
|
32 |
+
with gr.Blocks(css='style.css') as demo:
|
33 |
+
gr.Markdown(DESCRIPTION)
|
34 |
+
|
35 |
+
with gr.Box():
|
36 |
+
gr.Markdown('## Step 1')
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column():
|
39 |
+
with gr.Row():
|
40 |
+
input_image = gr.Image(label='Input Image', type='numpy')
|
41 |
+
with gr.Row():
|
42 |
+
detector_name = gr.Dropdown(
|
43 |
+
label='Detector',
|
44 |
+
choices=list(det_model.MODEL_DICT.keys()),
|
45 |
+
value=det_model.model_name)
|
46 |
+
with gr.Row():
|
47 |
+
detect_button = gr.Button('Detect')
|
48 |
+
det_preds = gr.Variable()
|
49 |
+
with gr.Column():
|
50 |
+
with gr.Row():
|
51 |
+
detection_visualization = gr.Image(
|
52 |
+
label='Detection Result',
|
53 |
+
type='numpy',
|
54 |
+
elem_id='det-result')
|
55 |
+
with gr.Row():
|
56 |
+
vis_det_score_threshold = gr.Slider(
|
57 |
+
label='Visualization Score Threshold',
|
58 |
+
minimum=0,
|
59 |
+
maximum=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
step=0.05,
|
61 |
+
value=0.5)
|
62 |
+
with gr.Row():
|
63 |
+
redraw_det_button = gr.Button(value='Redraw')
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
|
67 |
+
example_images = gr.Examples(examples=[[path.as_posix()]
|
68 |
+
for path in paths],
|
69 |
+
inputs=input_image)
|
70 |
+
|
71 |
+
with gr.Box():
|
72 |
+
gr.Markdown('## Step 2')
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
with gr.Row():
|
76 |
+
pose_model_name = gr.Dropdown(
|
77 |
+
label='Pose Model',
|
78 |
+
choices=list(pose_model.MODEL_DICT.keys()),
|
79 |
+
value=pose_model.model_name)
|
80 |
+
det_score_threshold = gr.Slider(label='Box Score Threshold',
|
81 |
+
minimum=0,
|
82 |
+
maximum=1,
|
83 |
+
step=0.05,
|
84 |
+
value=0.5)
|
85 |
+
with gr.Row():
|
86 |
+
predict_button = gr.Button('Predict')
|
87 |
+
pose_preds = gr.Variable()
|
88 |
+
with gr.Column():
|
89 |
+
with gr.Row():
|
90 |
+
pose_visualization = gr.Image(label='Result',
|
91 |
+
type='numpy',
|
92 |
+
elem_id='pose-result')
|
93 |
+
with gr.Row():
|
94 |
+
vis_kpt_score_threshold = gr.Slider(
|
95 |
+
label='Visualization Score Threshold',
|
96 |
+
minimum=0,
|
97 |
+
maximum=1,
|
98 |
+
step=0.05,
|
99 |
+
value=0.3)
|
100 |
+
with gr.Row():
|
101 |
+
vis_dot_radius = gr.Slider(label='Dot Radius',
|
102 |
+
minimum=1,
|
103 |
+
maximum=10,
|
104 |
+
step=1,
|
105 |
+
value=4)
|
106 |
+
with gr.Row():
|
107 |
+
vis_line_thickness = gr.Slider(label='Line Thickness',
|
108 |
+
minimum=1,
|
109 |
+
maximum=10,
|
110 |
step=1,
|
111 |
+
value=2)
|
112 |
+
with gr.Row():
|
113 |
+
redraw_pose_button = gr.Button('Redraw')
|
114 |
+
|
115 |
+
detector_name.change(fn=det_model.set_model,
|
116 |
+
inputs=detector_name,
|
117 |
+
outputs=None)
|
118 |
+
detect_button.click(fn=det_model.run,
|
119 |
+
inputs=[
|
120 |
+
detector_name,
|
121 |
+
input_image,
|
122 |
+
vis_det_score_threshold,
|
123 |
+
],
|
124 |
+
outputs=[
|
125 |
+
det_preds,
|
126 |
+
detection_visualization,
|
127 |
+
])
|
128 |
+
redraw_det_button.click(fn=det_model.visualize_detection_results,
|
129 |
inputs=[
|
|
|
130 |
input_image,
|
131 |
+
det_preds,
|
132 |
vis_det_score_threshold,
|
133 |
],
|
134 |
+
outputs=detection_visualization)
|
135 |
+
|
136 |
+
pose_model_name.change(fn=pose_model.set_model,
|
137 |
+
inputs=pose_model_name,
|
138 |
+
outputs=None)
|
139 |
+
predict_button.click(fn=pose_model.run,
|
140 |
+
inputs=[
|
141 |
+
pose_model_name,
|
142 |
+
input_image,
|
143 |
+
det_preds,
|
144 |
+
det_score_threshold,
|
145 |
+
vis_kpt_score_threshold,
|
146 |
+
vis_dot_radius,
|
147 |
+
vis_line_thickness,
|
148 |
+
],
|
149 |
+
outputs=[
|
150 |
+
pose_preds,
|
151 |
+
pose_visualization,
|
152 |
+
])
|
153 |
+
redraw_pose_button.click(fn=pose_model.visualize_pose_results,
|
154 |
inputs=[
|
|
|
155 |
input_image,
|
156 |
+
pose_preds,
|
|
|
157 |
vis_kpt_score_threshold,
|
158 |
vis_dot_radius,
|
159 |
vis_line_thickness,
|
160 |
],
|
161 |
+
outputs=pose_visualization)
|
162 |
+
|
163 |
+
demo.queue(api_open=False).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
@@ -2,6 +2,7 @@ from __future__ import annotations
|
|
2 |
|
3 |
import os
|
4 |
import pathlib
|
|
|
5 |
import subprocess
|
6 |
import sys
|
7 |
|
@@ -11,9 +12,9 @@ if os.getenv('SYSTEM') == 'spaces':
|
|
11 |
mim.uninstall('mmcv-full', confirm_yes=True)
|
12 |
mim.install('mmcv-full==1.5.0', is_yes=True)
|
13 |
|
14 |
-
subprocess.run('pip uninstall -y opencv-python'
|
15 |
-
subprocess.run('pip uninstall -y opencv-python-headless'
|
16 |
-
subprocess.run('pip install opencv-python-headless==4.5.5.64'
|
17 |
|
18 |
import huggingface_hub
|
19 |
import numpy as np
|
@@ -21,14 +22,14 @@ import torch
|
|
21 |
import torch.nn as nn
|
22 |
|
23 |
app_dir = pathlib.Path(__file__).parent
|
24 |
-
submodule_dir = app_dir / 'ViTPose
|
25 |
sys.path.insert(0, submodule_dir.as_posix())
|
26 |
|
27 |
from mmdet.apis import inference_detector, init_detector
|
28 |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
29 |
process_mmdet_results, vis_pose_result)
|
30 |
|
31 |
-
HF_TOKEN = os.
|
32 |
|
33 |
|
34 |
class DetModel:
|
@@ -59,8 +60,9 @@ class DetModel:
|
|
59 |
},
|
60 |
}
|
61 |
|
62 |
-
def __init__(self
|
63 |
-
self.device = torch.device(
|
|
|
64 |
self._load_all_models_once()
|
65 |
self.model_name = 'YOLOX-l'
|
66 |
self.model = self._load_model(self.model_name)
|
@@ -139,8 +141,9 @@ class PoseModel:
|
|
139 |
},
|
140 |
}
|
141 |
|
142 |
-
def __init__(self
|
143 |
-
self.device = torch.device(
|
|
|
144 |
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
145 |
self.model = self._load_model(self.model_name)
|
146 |
|
|
|
2 |
|
3 |
import os
|
4 |
import pathlib
|
5 |
+
import shlex
|
6 |
import subprocess
|
7 |
import sys
|
8 |
|
|
|
12 |
mim.uninstall('mmcv-full', confirm_yes=True)
|
13 |
mim.install('mmcv-full==1.5.0', is_yes=True)
|
14 |
|
15 |
+
subprocess.run(shlex.split('pip uninstall -y opencv-python'))
|
16 |
+
subprocess.run(shlex.split('pip uninstall -y opencv-python-headless'))
|
17 |
+
subprocess.run(shlex.split('pip install opencv-python-headless==4.5.5.64'))
|
18 |
|
19 |
import huggingface_hub
|
20 |
import numpy as np
|
|
|
22 |
import torch.nn as nn
|
23 |
|
24 |
app_dir = pathlib.Path(__file__).parent
|
25 |
+
submodule_dir = app_dir / 'ViTPose'
|
26 |
sys.path.insert(0, submodule_dir.as_posix())
|
27 |
|
28 |
from mmdet.apis import inference_detector, init_detector
|
29 |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
30 |
process_mmdet_results, vis_pose_result)
|
31 |
|
32 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
33 |
|
34 |
|
35 |
class DetModel:
|
|
|
60 |
},
|
61 |
}
|
62 |
|
63 |
+
def __init__(self):
|
64 |
+
self.device = torch.device(
|
65 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
66 |
self._load_all_models_once()
|
67 |
self.model_name = 'YOLOX-l'
|
68 |
self.model = self._load_model(self.model_name)
|
|
|
141 |
},
|
142 |
}
|
143 |
|
144 |
+
def __init__(self):
|
145 |
+
self.device = torch.device(
|
146 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
147 |
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
148 |
self.model = self._load_model(self.model_name)
|
149 |
|