cahya's picture
add gradio app
9fbe6a6
raw
history blame
1.75 kB
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import gradio as gr
import sox
def convert(inputfile, outfile):
sox_tfm = sox.Transformer()
sox_tfm.set_output_format(
file_type="wav", channels=1, encoding="signed-integer", rate=16000, bits=16
)
sox_tfm.build(inputfile, outfile)
model_name = "indonesian-nlp/wav2vec2-indonesian-javanese-sundanese"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
def parse_transcription(wav_file):
filename = wav_file.name.split('.')[0]
convert(wav_file.name, filename + "16k.wav")
speech, _ = sf.read(filename + "16k.wav")
input_values = processor(speech, sampling_rate=16_000, return_tensors="pt").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
return transcription
output = gr.outputs.Textbox(label="Indonesian, Javanese or Sundanese")
input_ = gr.inputs.Audio(source="microphone", type="file")
#gr.Interface(parse_transcription, inputs = input_, outputs="text",
# analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
gr.Interface(parse_transcription, inputs = input_, outputs=[output],
analytics_enabled=False,
show_tips=False,
theme='huggingface',
layout='vertical',
title="Multilingual Speech Recognition for Indonesian Languages",
description="Speech Recognition Live Demo for Indonesian, Javanese and Sundanese",
enable_queue=True).launch( inline=False)