File size: 3,082 Bytes
32161b2
2d8b72c
32161b2
2d8b72c
 
 
7ee16c9
7e7729e
af9ddfc
2d8b72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e7729e
 
2d8b72c
 
 
 
7e7729e
2d8b72c
 
 
af9ddfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32161b2
af9ddfc
 
 
 
2d8b72c
32161b2
af9ddfc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("Grandediw/lora_model")

def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks(title="Enhanced LORA Chat Interface") as demo:
    gr.Markdown(
        """
        # LORA Chat Assistant
        Welcome! This is a demo of a LORA-based Chat Assistant.  
        Start by entering your prompt in the chat box below.
        """
    )

    with gr.Row():
        # Left column: Chat interface
        with gr.Column():
            chat = gr.ChatInterface(
                fn=respond,
                additional_inputs=[],
                height=500
            )
        
        # Right column: Settings and System Message
        with gr.Column():
            gr.Markdown("### Configuration")
            system_message = gr.Textbox(
                value="You are a friendly Chatbot.",
                label="Initial Behavior (System Message)",
                lines=3,
                placeholder="Describe how the assistant should behave..."
            )

            with gr.Accordion("Advanced Settings", open=False):
                max_tokens = gr.Slider(
                    minimum=1, maximum=2048, value=512, step=1,
                    label="Max new tokens",
                    info="Controls the maximum number of tokens in the response."
                )
                temperature = gr.Slider(
                    minimum=0.1, maximum=4.0, value=0.7, step=0.1,
                    label="Temperature",
                    info="Higher values produce more random outputs."
                )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                    label="Top-p (nucleus sampling)",
                    info="Limits the tokens considered to the top portion by cumulative probability."
                )

            # Link parameters to the chat interface's function
            chat.configure(
                additional_inputs=[system_message, max_tokens, temperature, top_p]
            )

if __name__ == "__main__":
    demo.launch()