Grandediw commited on
Commit
578b99a
·
verified ·
1 Parent(s): 1c4c03f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -43
app.py CHANGED
@@ -1,64 +1,56 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Grandediw/lora_model")
8
 
 
 
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
- system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
34
  temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from unsloth import FastLanguageModel
3
+ from transformers import TextStreamer
 
 
 
 
4
 
5
+ # Load the model
6
+ model_path = "Grandediw/lora_model" # Replace with the actual model path
7
+ model = FastLanguageModel.for_inference(model_path)
8
+ tokenizer = model.tokenizer # Use the tokenizer from the model
9
 
10
+ # Define the response function
11
  def respond(
12
  message,
13
  history: list[tuple[str, str]],
 
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
+ # Build chat history
19
+ messages = [{"role": "user", "content": message}]
20
+ for user_msg, assistant_msg in history:
21
+ messages.append({"role": "user", "content": user_msg})
22
+ messages.append({"role": "assistant", "content": assistant_msg})
23
+
24
+ # Prepare inputs
25
+ inputs = tokenizer.apply_chat_template(
26
+ messages,
27
+ tokenize=True,
28
+ add_generation_prompt=True,
29
+ return_tensors="pt",
30
+ ).to("cuda")
31
 
32
+ # Stream response
33
  response = ""
34
+ streamer = TextStreamer(tokenizer, skip_prompt=True)
35
+ model.generate(
36
+ input_ids=inputs,
37
+ streamer=streamer,
38
+ max_new_tokens=max_tokens,
39
+ use_cache=True,
40
  temperature=temperature,
41
+ min_p=top_p,
42
+ )
43
+ return response
 
 
 
44
 
45
+ # Build the Gradio ChatInterface
 
 
 
46
  demo = gr.ChatInterface(
47
+ fn=respond,
48
  additional_inputs=[
49
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
50
+ gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
51
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
52
  ],
53
  )
54
 
 
55
  if __name__ == "__main__":
56
  demo.launch()