Update app.py
Browse files
app.py
CHANGED
@@ -4,65 +4,62 @@ from huggingface_hub import InferenceClient
|
|
4 |
client = InferenceClient("Grandediw/lora_model")
|
5 |
|
6 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
7 |
-
#
|
8 |
-
|
|
|
|
|
9 |
for user_msg, assistant_msg in history:
|
10 |
if user_msg:
|
11 |
-
|
12 |
if assistant_msg:
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
|
16 |
response = ""
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
temperature=temperature,
|
22 |
top_p=top_p,
|
|
|
23 |
):
|
24 |
-
|
|
|
25 |
response += token
|
26 |
yield response
|
27 |
|
28 |
-
with gr.Blocks(title="
|
29 |
-
gr.Markdown(
|
30 |
-
"""
|
31 |
-
# LORA Chat Assistant
|
32 |
-
Welcome! This is a demo of a LORA-based Chat Assistant.
|
33 |
-
Start by entering your prompt below.
|
34 |
-
"""
|
35 |
-
)
|
36 |
-
|
37 |
-
with gr.Row():
|
38 |
-
# System message and other parameters
|
39 |
-
with gr.Column():
|
40 |
-
system_message = gr.Textbox(
|
41 |
-
value="You are a friendly Chatbot.",
|
42 |
-
label="Initial Behavior (System Message)",
|
43 |
-
lines=3,
|
44 |
-
placeholder="Describe how the assistant should behave..."
|
45 |
-
)
|
46 |
-
max_tokens = gr.Slider(
|
47 |
-
minimum=1, maximum=2048, value=512, step=1,
|
48 |
-
label="Max new tokens"
|
49 |
-
)
|
50 |
-
temperature = gr.Slider(
|
51 |
-
minimum=0.1, maximum=4.0, value=0.7, step=0.1,
|
52 |
-
label="Temperature"
|
53 |
-
)
|
54 |
-
top_p = gr.Slider(
|
55 |
-
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)"
|
57 |
-
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
demo.launch()
|
|
|
4 |
client = InferenceClient("Grandediw/lora_model")
|
5 |
|
6 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
7 |
+
# Build the prompt from system_message and the conversation history
|
8 |
+
# history is a list of (user_message, assistant_message) tuples
|
9 |
+
prompt = system_message.strip() + "\n\n"
|
10 |
+
|
11 |
for user_msg, assistant_msg in history:
|
12 |
if user_msg:
|
13 |
+
prompt += f"User: {user_msg}\n"
|
14 |
if assistant_msg:
|
15 |
+
prompt += f"Assistant: {assistant_msg}\n"
|
16 |
+
|
17 |
+
# Add the latest user message
|
18 |
+
prompt += f"User: {message}\nAssistant:"
|
19 |
|
20 |
response = ""
|
21 |
+
# Use text_generation instead of chat_completion
|
22 |
+
for partial in client.text_generation(
|
23 |
+
prompt=prompt,
|
24 |
+
max_new_tokens=max_tokens,
|
25 |
temperature=temperature,
|
26 |
top_p=top_p,
|
27 |
+
stream=True
|
28 |
):
|
29 |
+
# partial is a TextGenerationStreamResponse
|
30 |
+
token = partial.token.text # Extract the generated token text
|
31 |
response += token
|
32 |
yield response
|
33 |
|
34 |
+
with gr.Blocks(title="Text Generation Interface") as demo:
|
35 |
+
gr.Markdown("# LORA Text Generation Demo")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
with gr.Column():
|
38 |
+
system_message = gr.Textbox(
|
39 |
+
value="You are a helpful and friendly assistant.",
|
40 |
+
label="System Prompt",
|
41 |
+
lines=3,
|
42 |
+
)
|
43 |
+
max_tokens = gr.Slider(
|
44 |
+
minimum=1, maximum=2048, value=512, step=1,
|
45 |
+
label="Max new tokens"
|
46 |
)
|
47 |
+
temperature = gr.Slider(
|
48 |
+
minimum=0.1, maximum=4.0, value=0.7, step=0.1,
|
49 |
+
label="Temperature"
|
50 |
+
)
|
51 |
+
top_p = gr.Slider(
|
52 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
53 |
+
label="Top-p"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Use type='tuple' if you want to maintain old style conversation format
|
57 |
+
# or omit it to use the default message format.
|
58 |
+
chat = gr.ChatInterface(
|
59 |
+
fn=respond,
|
60 |
+
additional_inputs=[system_message, max_tokens, temperature, top_p],
|
61 |
+
type='tuples'
|
62 |
+
)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|