Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,68 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("Grandediw/lora_model")
|
8 |
|
9 |
-
def respond(message, history
|
|
|
10 |
messages = [{"role": "system", "content": system_message}]
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
messages.append({"role": "assistant", "content": val[1]})
|
17 |
-
|
18 |
messages.append({"role": "user", "content": message})
|
19 |
|
20 |
response = ""
|
21 |
-
|
22 |
-
for message in client.chat_completion(
|
23 |
messages,
|
24 |
max_tokens=max_tokens,
|
25 |
stream=True,
|
26 |
temperature=temperature,
|
27 |
top_p=top_p,
|
28 |
):
|
29 |
-
token =
|
30 |
response += token
|
31 |
yield response
|
32 |
|
33 |
-
"""
|
34 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
35 |
-
"""
|
36 |
with gr.Blocks(title="Enhanced LORA Chat Interface") as demo:
|
37 |
gr.Markdown(
|
38 |
"""
|
39 |
# LORA Chat Assistant
|
40 |
Welcome! This is a demo of a LORA-based Chat Assistant.
|
41 |
-
Start by entering your prompt
|
42 |
"""
|
43 |
)
|
44 |
|
45 |
with gr.Row():
|
46 |
-
#
|
47 |
-
with gr.Column():
|
48 |
-
chat = gr.ChatInterface(
|
49 |
-
fn=respond,
|
50 |
-
additional_inputs=[]
|
51 |
-
)
|
52 |
-
|
53 |
-
# Right column: Settings and System Message
|
54 |
with gr.Column():
|
55 |
-
gr.Markdown("### Configuration")
|
56 |
system_message = gr.Textbox(
|
57 |
value="You are a friendly Chatbot.",
|
58 |
label="Initial Behavior (System Message)",
|
59 |
lines=3,
|
60 |
placeholder="Describe how the assistant should behave..."
|
61 |
)
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
temperature = gr.Slider(
|
70 |
-
minimum=0.1, maximum=4.0, value=0.7, step=0.1,
|
71 |
-
label="Temperature",
|
72 |
-
info="Higher values produce more random outputs."
|
73 |
-
)
|
74 |
-
top_p = gr.Slider(
|
75 |
-
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
76 |
-
label="Top-p (nucleus sampling)",
|
77 |
-
info="Limits the tokens considered to the top portion by cumulative probability."
|
78 |
-
)
|
79 |
-
|
80 |
-
# Link parameters to the chat interface's function
|
81 |
-
chat.configure(
|
82 |
-
additional_inputs=[system_message, max_tokens, temperature, top_p]
|
83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
|
|
|
|
|
|
4 |
client = InferenceClient("Grandediw/lora_model")
|
5 |
|
6 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
7 |
+
# Convert tuple-based history to messages if needed
|
8 |
messages = [{"role": "system", "content": system_message}]
|
9 |
+
for user_msg, assistant_msg in history:
|
10 |
+
if user_msg:
|
11 |
+
messages.append({"role": "user", "content": user_msg})
|
12 |
+
if assistant_msg:
|
13 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
|
|
14 |
messages.append({"role": "user", "content": message})
|
15 |
|
16 |
response = ""
|
17 |
+
for partial in client.chat_completion(
|
|
|
18 |
messages,
|
19 |
max_tokens=max_tokens,
|
20 |
stream=True,
|
21 |
temperature=temperature,
|
22 |
top_p=top_p,
|
23 |
):
|
24 |
+
token = partial.choices[0].delta.content
|
25 |
response += token
|
26 |
yield response
|
27 |
|
|
|
|
|
|
|
28 |
with gr.Blocks(title="Enhanced LORA Chat Interface") as demo:
|
29 |
gr.Markdown(
|
30 |
"""
|
31 |
# LORA Chat Assistant
|
32 |
Welcome! This is a demo of a LORA-based Chat Assistant.
|
33 |
+
Start by entering your prompt below.
|
34 |
"""
|
35 |
)
|
36 |
|
37 |
with gr.Row():
|
38 |
+
# System message and other parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
with gr.Column():
|
|
|
40 |
system_message = gr.Textbox(
|
41 |
value="You are a friendly Chatbot.",
|
42 |
label="Initial Behavior (System Message)",
|
43 |
lines=3,
|
44 |
placeholder="Describe how the assistant should behave..."
|
45 |
)
|
46 |
+
max_tokens = gr.Slider(
|
47 |
+
minimum=1, maximum=2048, value=512, step=1,
|
48 |
+
label="Max new tokens"
|
49 |
+
)
|
50 |
+
temperature = gr.Slider(
|
51 |
+
minimum=0.1, maximum=4.0, value=0.7, step=0.1,
|
52 |
+
label="Temperature"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
+
top_p = gr.Slider(
|
55 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
56 |
+
label="Top-p (nucleus sampling)"
|
57 |
+
)
|
58 |
+
|
59 |
+
# Create the chat interface using tuple format
|
60 |
+
# Note: `type='tuple'` preserves the (user, assistant) tuple format.
|
61 |
+
chat = gr.ChatInterface(
|
62 |
+
fn=respond,
|
63 |
+
additional_inputs=[system_message, max_tokens, temperature, top_p],
|
64 |
+
type='tuple'
|
65 |
+
)
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
demo.launch()
|