import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("Grandediw/lora_model") def respond(message, history, system_message, max_tokens, temperature, top_p): # Convert tuple-based history to messages if needed messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" for partial in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = partial.choices[0].delta.content response += token yield response with gr.Blocks(title="Enhanced LORA Chat Interface") as demo: gr.Markdown( """ # LORA Chat Assistant Welcome! This is a demo of a LORA-based Chat Assistant. Start by entering your prompt below. """ ) with gr.Row(): # System message and other parameters with gr.Column(): system_message = gr.Textbox( value="You are a friendly Chatbot.", label="Initial Behavior (System Message)", lines=3, placeholder="Describe how the assistant should behave..." ) max_tokens = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ) # Create the chat interface using tuple format # Note: `type='tuple'` preserves the (user, assistant) tuple format. chat = gr.ChatInterface( fn=respond, additional_inputs=[system_message, max_tokens, temperature, top_p], type='tuples' ) if __name__ == "__main__": demo.launch()