File size: 4,465 Bytes
7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c 1f2775d 7cb8b0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Grandediw/lora_model" # Use the fine-tuned model
# Adjust torch data type based on device
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load the model pipeline
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Inference function
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
# Generate the image
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
# Example prompts
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
# Improved CSS for better styling
css = """
#interface-container {
margin: 0 auto;
max-width: 700px;
padding: 10px;
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
border-radius: 10px;
background-color: #f9f9f9;
}
#header {
text-align: center;
font-size: 1.5em;
margin-bottom: 20px;
color: #333;
}
#advanced-settings {
background-color: #f1f1f1;
padding: 10px;
border-radius: 8px;
}
"""
# Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Box(elem_id="interface-container"):
gr.Markdown(
"""
<div id="header">🖼️ Text-to-Image Generator</div>
Generate high-quality images from your text prompts with the fine-tuned LoRA model.
"""
)
# Main input row
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to create...",
lines=2,
)
run_button = gr.Button("Generate Image", variant="primary")
# Output image display
result = gr.Image(label="Generated Image").style(height="512px")
# Advanced settings
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What to exclude from the image...",
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
seed = gr.Number(label="Seed", value=0, interactive=True)
with gr.Row():
width = gr.Slider(
label="Image Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=512,
)
height = gr.Slider(
label="Image Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=100,
step=5,
value=50,
)
# Examples
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result],
label="Try these prompts",
)
# Event handler
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|