Update
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
@@ -59,6 +60,159 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
|
|
60 |
],
|
61 |
)
|
62 |
|
63 |
+
=======
|
64 |
+
import gradio as gr
|
65 |
+
import numpy as np
|
66 |
+
import random
|
67 |
+
|
68 |
+
# import spaces #[uncomment to use ZeroGPU]
|
69 |
+
from diffusers import DiffusionPipeline
|
70 |
+
import torch
|
71 |
+
|
72 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
73 |
+
model_repo_id = "Grandediw/lora_model" # Replace to the model you would like to use
|
74 |
+
|
75 |
+
if torch.cuda.is_available():
|
76 |
+
torch_dtype = torch.float16
|
77 |
+
else:
|
78 |
+
torch_dtype = torch.float32
|
79 |
+
|
80 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
81 |
+
pipe = pipe.to(device)
|
82 |
+
|
83 |
+
MAX_SEED = np.iinfo(np.int32).max
|
84 |
+
MAX_IMAGE_SIZE = 1024
|
85 |
+
|
86 |
+
|
87 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
88 |
+
def infer(
|
89 |
+
prompt,
|
90 |
+
negative_prompt,
|
91 |
+
seed,
|
92 |
+
randomize_seed,
|
93 |
+
width,
|
94 |
+
height,
|
95 |
+
guidance_scale,
|
96 |
+
num_inference_steps,
|
97 |
+
progress=gr.Progress(track_tqdm=True),
|
98 |
+
):
|
99 |
+
if randomize_seed:
|
100 |
+
seed = random.randint(0, MAX_SEED)
|
101 |
+
|
102 |
+
generator = torch.Generator().manual_seed(seed)
|
103 |
+
|
104 |
+
image = pipe(
|
105 |
+
prompt=prompt,
|
106 |
+
negative_prompt=negative_prompt,
|
107 |
+
guidance_scale=guidance_scale,
|
108 |
+
num_inference_steps=num_inference_steps,
|
109 |
+
width=width,
|
110 |
+
height=height,
|
111 |
+
generator=generator,
|
112 |
+
).images[0]
|
113 |
+
|
114 |
+
return image, seed
|
115 |
+
|
116 |
+
|
117 |
+
examples = [
|
118 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
119 |
+
"An astronaut riding a green horse",
|
120 |
+
"A delicious ceviche cheesecake slice",
|
121 |
+
]
|
122 |
+
|
123 |
+
css = """
|
124 |
+
#col-container {
|
125 |
+
margin: 0 auto;
|
126 |
+
max-width: 640px;
|
127 |
+
}
|
128 |
+
"""
|
129 |
+
|
130 |
+
with gr.Blocks(css=css) as demo:
|
131 |
+
with gr.Column(elem_id="col-container"):
|
132 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
prompt = gr.Text(
|
136 |
+
label="Prompt",
|
137 |
+
show_label=False,
|
138 |
+
max_lines=1,
|
139 |
+
placeholder="Enter your prompt",
|
140 |
+
container=False,
|
141 |
+
)
|
142 |
+
|
143 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
144 |
+
|
145 |
+
result = gr.Image(label="Result", show_label=False)
|
146 |
+
|
147 |
+
with gr.Accordion("Advanced Settings", open=False):
|
148 |
+
negative_prompt = gr.Text(
|
149 |
+
label="Negative prompt",
|
150 |
+
max_lines=1,
|
151 |
+
placeholder="Enter a negative prompt",
|
152 |
+
visible=False,
|
153 |
+
)
|
154 |
+
|
155 |
+
seed = gr.Slider(
|
156 |
+
label="Seed",
|
157 |
+
minimum=0,
|
158 |
+
maximum=MAX_SEED,
|
159 |
+
step=1,
|
160 |
+
value=0,
|
161 |
+
)
|
162 |
+
|
163 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
width = gr.Slider(
|
167 |
+
label="Width",
|
168 |
+
minimum=256,
|
169 |
+
maximum=MAX_IMAGE_SIZE,
|
170 |
+
step=32,
|
171 |
+
value=1024, # Replace with defaults that work for your model
|
172 |
+
)
|
173 |
+
|
174 |
+
height = gr.Slider(
|
175 |
+
label="Height",
|
176 |
+
minimum=256,
|
177 |
+
maximum=MAX_IMAGE_SIZE,
|
178 |
+
step=32,
|
179 |
+
value=1024, # Replace with defaults that work for your model
|
180 |
+
)
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
+
guidance_scale = gr.Slider(
|
184 |
+
label="Guidance scale",
|
185 |
+
minimum=0.0,
|
186 |
+
maximum=10.0,
|
187 |
+
step=0.1,
|
188 |
+
value=0.0, # Replace with defaults that work for your model
|
189 |
+
)
|
190 |
+
|
191 |
+
num_inference_steps = gr.Slider(
|
192 |
+
label="Number of inference steps",
|
193 |
+
minimum=1,
|
194 |
+
maximum=50,
|
195 |
+
step=1,
|
196 |
+
value=2, # Replace with defaults that work for your model
|
197 |
+
)
|
198 |
+
|
199 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
200 |
+
gr.on(
|
201 |
+
triggers=[run_button.click, prompt.submit],
|
202 |
+
fn=infer,
|
203 |
+
inputs=[
|
204 |
+
prompt,
|
205 |
+
negative_prompt,
|
206 |
+
seed,
|
207 |
+
randomize_seed,
|
208 |
+
width,
|
209 |
+
height,
|
210 |
+
guidance_scale,
|
211 |
+
num_inference_steps,
|
212 |
+
],
|
213 |
+
outputs=[result, seed],
|
214 |
+
)
|
215 |
+
>>>>>>> 31908329aa8aa1d9432af8899421971abe08af4f
|
216 |
|
217 |
if __name__ == "__main__":
|
218 |
demo.launch()
|