Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
-
from safetensors.torch import load_file
|
6 |
|
7 |
# Load the Hugging Face API token from environment variable
|
8 |
token = os.getenv("HUGGINGFACE_API_TOKEN")
|
@@ -10,41 +9,41 @@ if not token:
|
|
10 |
raise ValueError("HUGGINGFACE_API_TOKEN is not set. Please add it in the Secrets section of your Space.")
|
11 |
|
12 |
# Configure device
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
# Load the tokenizer and model using the token
|
16 |
-
model_repo = "
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_repo,
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
if name in lora_weights:
|
27 |
-
param.data += lora_weights[name].to(device, dtype=param.dtype)
|
28 |
|
29 |
# Move the model to the device
|
30 |
-
|
|
|
31 |
|
32 |
# Define the inference function
|
33 |
def infer(prompt):
|
34 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
# Gradio interface
|
40 |
with gr.Blocks() as demo:
|
41 |
-
gr.Markdown("##
|
42 |
|
43 |
with gr.Row():
|
44 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
45 |
generate_button = gr.Button("Generate")
|
46 |
|
47 |
-
output = gr.Textbox(label="
|
48 |
|
49 |
generate_button.click(fn=infer, inputs=[prompt], outputs=[output])
|
50 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
5 |
|
6 |
# Load the Hugging Face API token from environment variable
|
7 |
token = os.getenv("HUGGINGFACE_API_TOKEN")
|
|
|
9 |
raise ValueError("HUGGINGFACE_API_TOKEN is not set. Please add it in the Secrets section of your Space.")
|
10 |
|
11 |
# Configure device
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
# Load the tokenizer and model using the token
|
15 |
+
model_repo = "unsloth/Llama-3.2-3B-Instruct-bnb-4bit"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_auth_token=token)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_repo,
|
19 |
+
use_auth_token=token,
|
20 |
+
device_map="auto",
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
load_in_4bit=True,
|
23 |
+
quantization_config={"bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}
|
24 |
+
)
|
|
|
|
|
25 |
|
26 |
# Move the model to the device
|
27 |
+
model.to(device)
|
28 |
+
model.eval()
|
29 |
|
30 |
# Define the inference function
|
31 |
def infer(prompt):
|
32 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(**inputs, max_length=512)
|
35 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
return generated_text
|
37 |
|
38 |
# Gradio interface
|
39 |
with gr.Blocks() as demo:
|
40 |
+
gr.Markdown("## Llama 3.2 3B Instruct Model Inference")
|
41 |
|
42 |
with gr.Row():
|
43 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
44 |
generate_button = gr.Button("Generate")
|
45 |
|
46 |
+
output = gr.Textbox(label="Generated Text")
|
47 |
|
48 |
generate_button.click(fn=infer, inputs=[prompt], outputs=[output])
|
49 |
|