Spaces:
Sleeping
Sleeping
Grandediw
commited on
Commit
·
decbb4f
1
Parent(s):
53dbe56
Update
Browse files
app.py
CHANGED
@@ -1,6 +1,26 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Initialize chat history
|
6 |
if "messages" not in st.session_state:
|
@@ -11,16 +31,24 @@ for message in st.session_state.messages:
|
|
11 |
with st.chat_message(message["role"]):
|
12 |
st.markdown(message["content"])
|
13 |
|
14 |
-
#
|
15 |
-
if prompt := st.chat_input("
|
16 |
-
# Display user message
|
17 |
st.chat_message("user").markdown(prompt)
|
18 |
-
# Add user message to chat history
|
19 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
with st.chat_message("assistant"):
|
24 |
st.markdown(response)
|
25 |
-
# Add assistant response to chat history
|
26 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
+
st.set_page_config(page_title="Hugging Face Chatbot", layout="centered")
|
5 |
+
st.title("Hugging Face Chatbot")
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
# Load tokenizer and model from Hugging Face
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("Grandediw/lora_model_finetuned", use_fast=True)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained("Grandediw/lora_model_finetuned", device_map="auto", trust_remote_code=True)
|
12 |
+
chat_pipeline = pipeline(
|
13 |
+
"text-generation",
|
14 |
+
model=model,
|
15 |
+
tokenizer=tokenizer,
|
16 |
+
max_length=512,
|
17 |
+
temperature=0.7,
|
18 |
+
top_p=0.9,
|
19 |
+
pad_token_id=tokenizer.eos_token_id
|
20 |
+
)
|
21 |
+
return chat_pipeline
|
22 |
+
|
23 |
+
chat_pipeline = load_model()
|
24 |
|
25 |
# Initialize chat history
|
26 |
if "messages" not in st.session_state:
|
|
|
31 |
with st.chat_message(message["role"]):
|
32 |
st.markdown(message["content"])
|
33 |
|
34 |
+
# User input
|
35 |
+
if prompt := st.chat_input("Ask me anything:"):
|
36 |
+
# Display user message and store it
|
37 |
st.chat_message("user").markdown(prompt)
|
|
|
38 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
39 |
|
40 |
+
# Generate response
|
41 |
+
with st.spinner("Thinking..."):
|
42 |
+
# Using the pipeline to generate a response
|
43 |
+
response = chat_pipeline(prompt)[0]["generated_text"]
|
44 |
+
|
45 |
+
# The model may return the prompt + response concatenated, so you might need
|
46 |
+
# to extract only the response part. This depends on how the model is trained.
|
47 |
+
# Here we assume the model returns the full text and we just remove the original prompt from it:
|
48 |
+
if response.startswith(prompt):
|
49 |
+
response = response[len(prompt):].strip()
|
50 |
+
|
51 |
+
# Display and store assistant response
|
52 |
with st.chat_message("assistant"):
|
53 |
st.markdown(response)
|
|
|
54 |
st.session_state.messages.append({"role": "assistant", "content": response})
|