Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,9 @@ import numpy as np
|
|
7 |
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
from sklearn.naive_bayes import MultinomialNB
|
9 |
import asyncio
|
|
|
10 |
from huggingface_hub import InferenceClient
|
|
|
11 |
import json
|
12 |
import warnings
|
13 |
|
@@ -19,12 +21,10 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
def get_huggingface_api_token():
|
22 |
-
""" Retrieves the Hugging Face API token from environment variables or a config file. """
|
23 |
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
24 |
if token:
|
25 |
logger.info("Hugging Face API token found in environment variables.")
|
26 |
return token
|
27 |
-
|
28 |
try:
|
29 |
with open('config.json', 'r') as config_file:
|
30 |
config = json.load(config_file)
|
@@ -36,105 +36,68 @@ def get_huggingface_api_token():
|
|
36 |
logger.warning("Config file not found.")
|
37 |
except json.JSONDecodeError:
|
38 |
logger.error("Error reading the config file. Please check its format.")
|
39 |
-
|
40 |
logger.error("Hugging Face API token not found. Please set it up.")
|
41 |
return None
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
def is_relevant_topic(query):
|
75 |
-
""" Checks if the query is relevant based on pre-defined topics. """
|
76 |
-
query_vector = vectorizer.transform([query])
|
77 |
-
prediction = classifier.predict(query_vector)
|
78 |
-
return prediction[0] in range(len(approved_topics))
|
79 |
-
|
80 |
-
def redact_sensitive_info(text):
|
81 |
-
""" Redacts sensitive information from the text. """
|
82 |
-
text = re.sub(r'\b\d{10,12}\b', '[REDACTED]', text)
|
83 |
-
text = re.sub(r'[A-Z]{5}[0-9]{4}[A-Z]', '[REDACTED]', text)
|
84 |
-
return text
|
85 |
-
|
86 |
-
def check_response_content(response):
|
87 |
-
""" Checks response content for unauthorized claims or advice. """
|
88 |
-
unauthorized_patterns = [
|
89 |
-
r'\b(guarantee|assured|certain)\b.*\b(returns|profit)\b',
|
90 |
-
r'\b(buy|sell)\b.*\b(specific stocks?|shares?)\b'
|
91 |
-
]
|
92 |
-
return not any(re.search(pattern, response, re.IGNORECASE) for pattern in unauthorized_patterns)
|
93 |
-
|
94 |
-
async def generate_response(prompt):
|
95 |
-
""" Generates a response using the Hugging Face inference client. """
|
96 |
-
try:
|
97 |
-
response = await client.text_generation(prompt, max_new_tokens=500, temperature=0.7)
|
98 |
return response
|
99 |
-
except Exception as e:
|
100 |
-
logger.error(f"Error generating response: {e}")
|
101 |
-
return "I apologize, but I'm having trouble generating a response at the moment. Please try again later."
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
if not re.search(r'(Thank you|Is there anything else|Hope this helps|Let me know if you need more information)\s*$', response, re.IGNORECASE):
|
108 |
-
response += "\n\nIs there anything else I can help you with regarding Zerodha's services?"
|
109 |
-
|
110 |
-
if re.search(r'\b(invest|trade|buy|sell|market)\b', response, re.IGNORECASE):
|
111 |
-
response += "\n\nPlease note that this information is for educational purposes only and should not be considered as financial advice. Always do your own research and consider consulting with a qualified financial advisor before making investment decisions."
|
112 |
-
|
113 |
-
return response
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
login_button = gr.Button("Login")
|
121 |
-
|
122 |
-
with gr.Row():
|
123 |
-
query_input = gr.Textbox(label="Enter your query")
|
124 |
-
submit_button = gr.Button("Submit")
|
125 |
-
response_output = gr.Textbox(label="Response")
|
126 |
-
|
127 |
-
login_button.click(
|
128 |
-
fn=lambda u, p: "Login successful" if u == "admin" and p == "admin" else "Login failed",
|
129 |
-
inputs=[username, password],
|
130 |
-
outputs=[gr.Text(label="Login status")]
|
131 |
-
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
app.launch()
|
|
|
7 |
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
from sklearn.naive_bayes import MultinomialNB
|
9 |
import asyncio
|
10 |
+
from crewai import Agent, Task, Crew
|
11 |
from huggingface_hub import InferenceClient
|
12 |
+
import random
|
13 |
import json
|
14 |
import warnings
|
15 |
|
|
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
def get_huggingface_api_token():
|
|
|
24 |
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
25 |
if token:
|
26 |
logger.info("Hugging Face API token found in environment variables.")
|
27 |
return token
|
|
|
28 |
try:
|
29 |
with open('config.json', 'r') as config_file:
|
30 |
config = json.load(config_file)
|
|
|
36 |
logger.warning("Config file not found.")
|
37 |
except json.JSONDecodeError:
|
38 |
logger.error("Error reading the config file. Please check its format.")
|
|
|
39 |
logger.error("Hugging Face API token not found. Please set it up.")
|
40 |
return None
|
41 |
|
42 |
+
token = get_huggingface_api_token()
|
43 |
+
if not token:
|
44 |
+
logger.error("Hugging Face API token is not set. Exiting.")
|
45 |
+
sys.exit(1)
|
46 |
+
|
47 |
+
hf_client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=token)
|
48 |
+
|
49 |
+
vectorizer = CountVectorizer()
|
50 |
+
approved_topics = ['account opening', 'trading', 'fees', 'platforms', 'funds', 'regulations', 'support']
|
51 |
+
X = vectorizer.fit_transform(approved_topics)
|
52 |
+
classifier = MultinomialNB()
|
53 |
+
classifier.fit(X, np.arange(len(approved_topics)))
|
54 |
+
|
55 |
+
class CommunicationExpertAgent(Agent):
|
56 |
+
async def run(self, query):
|
57 |
+
sanitized_query = re.sub(r'[<>&\']', '', query)
|
58 |
+
topic_relevance = classifier.predict(vectorizer.transform([sanitized_query]))[0] in range(len(approved_topics))
|
59 |
+
if not topic_relevance:
|
60 |
+
return "Query not relevant to our services."
|
61 |
+
emotional_context = "Identified emotional context" # Simulate emotional context analysis
|
62 |
+
rephrased_query = f"Rephrased with empathy: {sanitized_query} - {emotional_context}"
|
63 |
+
return rephrased_query
|
64 |
+
|
65 |
+
class ResponseExpertAgent(Agent):
|
66 |
+
async def run(self, rephrased_query):
|
67 |
+
response = await hf_client.text_generation(rephrased_query, max_new_tokens=500, temperature=0.7)
|
68 |
+
return response['generated_text']
|
69 |
+
|
70 |
+
class PostprocessingAgent(Agent):
|
71 |
+
def run(self, response):
|
72 |
+
response += "\n\nThank you for contacting Zerodha. Is there anything else we can help with?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
return response
|
|
|
|
|
|
|
74 |
|
75 |
+
# Instantiate agents
|
76 |
+
communication_expert = CommunicationExpertAgent()
|
77 |
+
response_expert = ResponseExpertAgent()
|
78 |
+
postprocessing_agent = PostprocessingAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
async def handle_query(query):
|
81 |
+
rephrased_query = await communication_expert.run(query)
|
82 |
+
response = await response_expert.run(rephrased_query)
|
83 |
+
final_response = postprocessing_agent.run(response)
|
84 |
+
return final_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Gradio interface setup
|
87 |
+
def setup_interface():
|
88 |
+
with gr.Blocks() as app:
|
89 |
+
with gr.Row():
|
90 |
+
query_input = gr.Textbox(label="Enter your query")
|
91 |
+
submit_button = gr.Button("Submit")
|
92 |
+
response_output = gr.Textbox(label="Response")
|
93 |
+
submit_button.click(
|
94 |
+
fn=lambda x: asyncio.run(handle_query(x)),
|
95 |
+
inputs=[query_input],
|
96 |
+
outputs=[response_output]
|
97 |
+
)
|
98 |
+
return app
|
99 |
+
|
100 |
+
app = setup_interface()
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
app.launch()
|