Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,329 +1,127 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
-
import os
|
4 |
-
from fastapi import FastAPI, HTTPException, Depends
|
5 |
-
from fastapi.security import OAuth2PasswordBearer
|
6 |
-
from sqlalchemy.orm import Session
|
7 |
-
from pydantic import BaseModel
|
8 |
-
from typing import List
|
9 |
import autogen
|
10 |
-
|
11 |
from huggingface_hub import InferenceClient
|
12 |
-
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
)
|
66 |
-
|
67 |
-
#
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
)
|
102 |
-
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
)
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
tasks=[account_task, trading_task, tech_support_task, learning_task, product_task],
|
133 |
-
verbose=2
|
134 |
-
)
|
135 |
-
|
136 |
-
# Pydantic models
|
137 |
-
class QueryInput(BaseModel):
|
138 |
-
text: str
|
139 |
-
|
140 |
-
class QueryOutput(BaseModel):
|
141 |
-
response: str
|
142 |
-
sentiment: str
|
143 |
-
|
144 |
-
# Dependency to get the database session
|
145 |
-
def get_db():
|
146 |
-
db = SessionLocal()
|
147 |
-
try:
|
148 |
-
yield db
|
149 |
-
finally:
|
150 |
-
db.close()
|
151 |
-
|
152 |
-
# Helper function to generate LLM response
|
153 |
-
def generate_llm_response(prompt):
|
154 |
-
return hf_client.text_generation(prompt, max_new_tokens=200, temperature=0.7)
|
155 |
-
|
156 |
-
# Helper function to check cache
|
157 |
-
def check_cache(query):
|
158 |
-
cached_response = redis_client.get(query)
|
159 |
-
if cached_response:
|
160 |
-
return json.loads(cached_response)
|
161 |
-
return None
|
162 |
-
|
163 |
-
# Helper function to update cache
|
164 |
-
def update_cache(query, response):
|
165 |
-
redis_client.setex(query, 3600, json.dumps(response)) # Cache for 1 hour
|
166 |
-
|
167 |
-
# Main query processing function
|
168 |
-
async def process_query(query: str, db: Session):
|
169 |
-
try:
|
170 |
-
# Check cache
|
171 |
-
cached_result = check_cache(query)
|
172 |
-
if cached_result:
|
173 |
-
logger.info(f"Cache hit for query: {query[:50]}...")
|
174 |
-
return cached_result
|
175 |
-
|
176 |
-
# Step 1: Query Analysis
|
177 |
-
analysis = query_analyzer.generate_response(f"Analyze this query: {query}")
|
178 |
-
|
179 |
-
# Step 2: Route to Appropriate Specialist Agents
|
180 |
-
specialist_responses = {}
|
181 |
-
if "account" in analysis.lower():
|
182 |
-
specialist_responses['account'] = account_specialist.execute(account_task, {"query": query})
|
183 |
-
if "trading" in analysis.lower():
|
184 |
-
specialist_responses['trading'] = trading_expert.execute(trading_task, {"query": query})
|
185 |
-
if "technical" in analysis.lower():
|
186 |
-
specialist_responses['technical'] = technical_support.execute(tech_support_task, {"query": query})
|
187 |
-
if "product" in analysis.lower():
|
188 |
-
specialist_responses['product'] = product_specialist.execute(product_task, {"query": query})
|
189 |
-
|
190 |
-
# Step 3: Compliance Check
|
191 |
-
for key in specialist_responses:
|
192 |
-
specialist_responses[key] = compliance_agent.generate_response(f"Ensure this response is compliant: {specialist_responses[key]}")
|
193 |
-
|
194 |
-
# Step 4: Coordinate Final Response
|
195 |
-
final_response = coordinator.generate_response(f"Synthesize these responses into a final answer: {specialist_responses}")
|
196 |
-
|
197 |
-
# Step 5: Sentiment Analysis
|
198 |
-
sentiment = sentiment_analyzer.generate_response(f"Analyze the sentiment of this interaction: Query: {query}, Response: {final_response}")
|
199 |
-
|
200 |
-
# Step 6: Update Knowledge Base
|
201 |
-
kb_manager.generate_response(f"Update knowledge base based on: Query: {query}, Response: {final_response}")
|
202 |
-
|
203 |
-
# Step 7: Generate Learning Content (if needed)
|
204 |
-
if "educational" in analysis.lower():
|
205 |
-
learning_dev.execute(learning_task, {"query": query, "response": final_response})
|
206 |
-
|
207 |
-
# Save query and response to database
|
208 |
-
db_query = Query(text=query)
|
209 |
-
db.add(db_query)
|
210 |
-
db.commit()
|
211 |
-
db.refresh(db_query)
|
212 |
-
|
213 |
-
db_response = Response(text=final_response, query_id=db_query.id)
|
214 |
-
db.add(db_response)
|
215 |
-
db.commit()
|
216 |
-
|
217 |
-
result = {"response": final_response, "sentiment": sentiment}
|
218 |
-
|
219 |
-
# Update cache
|
220 |
-
update_cache(query, result)
|
221 |
-
|
222 |
-
return result
|
223 |
-
|
224 |
-
except Exception as e:
|
225 |
-
logger.error(f"Error processing query: {str(e)}", exc_info=True)
|
226 |
-
raise HTTPException(status_code=500, detail="An error occurred while processing your query")
|
227 |
-
|
228 |
-
# API Endpoints
|
229 |
-
@app.post("/query", response_model=QueryOutput)
|
230 |
-
async def handle_query(query: QueryInput, db: Session = Depends(get_db), current_user: User = Depends(get_current_user)):
|
231 |
-
result = await process_query(query.text, db)
|
232 |
-
return QueryOutput(**result)
|
233 |
-
|
234 |
-
# Run the application
|
235 |
-
if __name__ == "__main__":
|
236 |
-
import uvicorn
|
237 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
238 |
-
|
239 |
-
# models.py
|
240 |
-
|
241 |
-
from sqlalchemy import Column, Integer, String, ForeignKey
|
242 |
-
from sqlalchemy.orm import relationship
|
243 |
-
from database import Base
|
244 |
-
|
245 |
-
class User(Base):
|
246 |
-
__tablename__ = "users"
|
247 |
-
|
248 |
-
id = Column(Integer, primary_key=True, index=True)
|
249 |
-
username = Column(String, unique=True, index=True)
|
250 |
-
hashed_password = Column(String)
|
251 |
-
|
252 |
-
class Query(Base):
|
253 |
-
__tablename__ = "queries"
|
254 |
-
|
255 |
-
id = Column(Integer, primary_key=True, index=True)
|
256 |
-
text = Column(String)
|
257 |
-
responses = relationship("Response", back_populates="query")
|
258 |
-
|
259 |
-
class Response(Base):
|
260 |
-
__tablename__ = "responses"
|
261 |
-
|
262 |
-
id = Column(Integer, primary_key=True, index=True)
|
263 |
-
text = Column(String)
|
264 |
-
query_id = Column(Integer, ForeignKey("queries.id"))
|
265 |
-
query = relationship("Query", back_populates="responses")
|
266 |
-
|
267 |
-
# database.py
|
268 |
-
|
269 |
-
from sqlalchemy import create_engine
|
270 |
-
from sqlalchemy.ext.declarative import declarative_base
|
271 |
-
from sqlalchemy.orm import sessionmaker
|
272 |
-
|
273 |
-
SQLALCHEMY_DATABASE_URL = "sqlite:///./zerodha_support.db"
|
274 |
-
|
275 |
-
engine = create_engine(
|
276 |
-
SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
|
277 |
-
)
|
278 |
-
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
|
279 |
-
|
280 |
-
Base = declarative_base()
|
281 |
-
|
282 |
-
# auth.py
|
283 |
-
|
284 |
-
from datetime import datetime, timedelta
|
285 |
-
from jose import JWTError, jwt
|
286 |
-
from passlib.context import CryptContext
|
287 |
-
from fastapi import Depends, HTTPException, status
|
288 |
-
from fastapi.security import OAuth2PasswordBearer
|
289 |
-
from sqlalchemy.orm import Session
|
290 |
-
from models import User
|
291 |
-
from database import get_db
|
292 |
-
|
293 |
-
SECRET_KEY = "your-secret-key"
|
294 |
-
ALGORITHM = "HS256"
|
295 |
-
ACCESS_TOKEN_EXPIRE_MINUTES = 30
|
296 |
-
|
297 |
-
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
298 |
-
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
299 |
-
|
300 |
-
def verify_password(plain_password, hashed_password):
|
301 |
-
return pwd_context.verify(plain_password, hashed_password)
|
302 |
-
|
303 |
-
def get_password_hash(password):
|
304 |
-
return pwd_context.hash(password)
|
305 |
-
|
306 |
-
def create_access_token(data: dict):
|
307 |
-
to_encode = data.copy()
|
308 |
-
expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
|
309 |
-
to_encode.update({"exp": expire})
|
310 |
-
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
311 |
-
return encoded_jwt
|
312 |
-
|
313 |
-
def get_current_user(token: str = Depends(oauth2_scheme), db: Session = Depends(get_db)):
|
314 |
-
credentials_exception = HTTPException(
|
315 |
-
status_code=status.HTTP_401_UNAUTHORIZED,
|
316 |
-
detail="Could not validate credentials",
|
317 |
-
headers={"WWW-Authenticate": "Bearer"},
|
318 |
-
)
|
319 |
-
try:
|
320 |
-
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
321 |
-
username: str = payload.get("sub")
|
322 |
-
if username is None:
|
323 |
-
raise credentials_exception
|
324 |
-
except JWTError:
|
325 |
-
raise credentials_exception
|
326 |
-
user = db.query(User).filter(User.username == username).first()
|
327 |
-
if user is None:
|
328 |
-
raise credentials_exception
|
329 |
-
return user
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from crewai import Agent as CrewAgent, Task, Crew
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import autogen
|
6 |
+
|
7 |
from huggingface_hub import InferenceClient
|
8 |
+
|
9 |
+
import os
|
10 |
+
|
11 |
+
import re
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
16 |
+
|
17 |
+
from sklearn.naive_bayes import MultinomialNB
|
18 |
+
|
19 |
+
# ... (previous code remains the same)
|
20 |
+
|
21 |
+
# Input Validation Guardrails
|
22 |
+
|
23 |
+
def sanitize_input(input_text):
|
24 |
+
|
25 |
+
# Remove any potentially harmful characters or scripts
|
26 |
+
|
27 |
+
sanitized = re.sub(r'[<>&\']', '', input_text)
|
28 |
+
|
29 |
+
return sanitized
|
30 |
+
|
31 |
+
# Topic Restriction Guardrails
|
32 |
+
|
33 |
+
approved_topics = ['account opening', 'trading', 'fees', 'platforms', 'funds', 'regulations', 'support']
|
34 |
+
|
35 |
+
vectorizer = CountVectorizer()
|
36 |
+
|
37 |
+
classifier = MultinomialNB()
|
38 |
+
|
39 |
+
# Train the classifier with sample data (in a real scenario, you'd use more comprehensive training data)
|
40 |
+
|
41 |
+
X = vectorizer.fit_transform(approved_topics)
|
42 |
+
|
43 |
+
y = np.arange(len(approved_topics))
|
44 |
+
|
45 |
+
classifier.fit(X, y)
|
46 |
+
|
47 |
+
def is_relevant_topic(query):
|
48 |
+
|
49 |
+
query_vector = vectorizer.transform([query])
|
50 |
+
|
51 |
+
prediction = classifier.predict(query_vector)
|
52 |
+
|
53 |
+
return prediction[0] in range(len(approved_topics))
|
54 |
+
|
55 |
+
# Sensitive Information Guardrails
|
56 |
+
|
57 |
+
def redact_sensitive_info(text):
|
58 |
+
|
59 |
+
# Redact potential account numbers, PAN, Aadhaar
|
60 |
+
|
61 |
+
text = re.sub(r'\b\d{10,12}\b', '[REDACTED]', text)
|
62 |
+
|
63 |
+
text = re.sub(r'[A-Z]{5}[0-9]{4}[A-Z]', '[REDACTED]', text) # PAN format
|
64 |
+
|
65 |
+
return text
|
66 |
+
|
67 |
+
# Response Content Guardrails
|
68 |
+
|
69 |
+
def check_response_content(response):
|
70 |
+
|
71 |
+
unauthorized_patterns = [
|
72 |
+
|
73 |
+
r'\b(guarantee|assured|certain)\b.*\b(returns|profit)\b',
|
74 |
+
|
75 |
+
r'\b(buy|sell)\b.*\b(specific stocks?|shares?)\b'
|
76 |
+
|
77 |
+
]
|
78 |
+
|
79 |
+
for pattern in unauthorized_patterns:
|
80 |
+
|
81 |
+
if re.search(pattern, response, re.IGNORECASE):
|
82 |
+
|
83 |
+
return False
|
84 |
+
|
85 |
+
return True
|
86 |
+
|
87 |
+
# Confidence Threshold Guardrails
|
88 |
+
|
89 |
+
def check_confidence(response):
|
90 |
+
|
91 |
+
# This is a simplified version. In a real scenario, you'd use the model's confidence score
|
92 |
+
|
93 |
+
uncertain_phrases = ['I'm not sure', 'It's possible', 'I don't have enough information']
|
94 |
+
|
95 |
+
return not any(phrase in response for phrase in uncertain_phrases)
|
96 |
+
|
97 |
+
def zerodha_support(message, history):
|
98 |
+
|
99 |
+
# Input Guardrails
|
100 |
+
|
101 |
+
sanitized_message = sanitize_input(message)
|
102 |
+
|
103 |
+
if not is_relevant_topic(sanitized_message):
|
104 |
+
|
105 |
+
return "I'm sorry, but I can only assist with queries related to Zerodha's services and trading. Could you please ask a question about your Zerodha account, trading, or our platforms?"
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
sanitized_message = redact_sensitive_info(sanitized_message)
|
110 |
+
|
111 |
+
# ... (rest of the zerodha_support function remains the same)
|
112 |
+
|
113 |
+
# Output Guardrails
|
114 |
+
|
115 |
+
if not check_response_content(final_response):
|
116 |
+
|
117 |
+
final_response += "\n\nPlease note that I cannot provide specific investment advice or guarantee returns. For personalized guidance, please consult with a qualified financial advisor."
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
if not check_confidence(final_response):
|
122 |
+
|
123 |
+
final_response = "I apologize, but I'm not confident in providing an accurate answer to this query. For the most up-to-date and accurate information, please contact Zerodha's customer support directly."
|
124 |
+
|
125 |
+
return final_response
|
126 |
+
|
127 |
+
# ... (rest of the code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|