evacado commited on
Commit
2491006
·
verified ·
1 Parent(s): a1a5c6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +190 -17
app.py CHANGED
@@ -106,10 +106,16 @@ def query_model(question):
106
  response = generate_response(question, relevant_segment)
107
  return response
108
 
 
 
 
 
 
 
 
109
  # Define the welcome message and specific topics the chatbot can provide information about
110
  welcome_message = """
111
- # ♟️ Welcome to GreenGuide!
112
-
113
  ## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp.
114
  """
115
 
@@ -120,33 +126,34 @@ topics = """
120
  - Parks & Gardens
121
  - Thrift Stores
122
  - Attractions
123
-
124
  """
125
 
126
  # Create a Gradio HTML component
127
  def display_iframe():
128
  return iframe
129
  def display_image():
130
- return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
 
131
  theme = gr.themes.Monochrome(
132
- primary_hue="amber",
133
  secondary_hue="rose",
134
  ).set(
135
- background_fill_primary='*primary_200',
136
- background_fill_primary_dark='*primary_200',
137
- background_fill_secondary='*secondary_300',
138
- background_fill_secondary_dark='*secondary_300',
139
- border_color_accent='*secondary_200',
140
- border_color_accent_dark='*secondary_600',
141
- border_color_accent_subdued='*secondary_200',
142
- border_color_primary='*secondary_300',
143
- block_border_color='*secondary_200',
144
- button_primary_background_fill='*secondary_300',
145
- button_primary_background_fill_dark='*secondary_300'
146
  )
147
 
148
  # Setup the Gradio Blocks interface with custom layout components
149
- with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
 
150
  gr.Markdown(welcome_message) # Display the formatted welcome message
151
  with gr.Row():
152
  with gr.Column():
@@ -157,7 +164,173 @@ with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
157
  answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
158
  submit_button = gr.Button("Submit")
159
  submit_button.click(fn=query_model, inputs=question, outputs=answer)
 
 
160
 
161
 
162
  # Launch the Gradio app to allow user interaction
163
  demo.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  response = generate_response(question, relevant_segment)
107
  return response
108
 
109
+ # Define the HTML iframe content
110
+
111
+ iframe = '''
112
+ <iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d193595.2528001417!2d-74.1444872802558!3d40.69763123330436!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x89c24fa5d33f083b%3A0xc80b8f06e177fe62!2sNew%20York%2C%20NY!5e0!3m2!1sen!2sus!4v1722483445443!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy" referrerpolicy="no-referrer-when-downgrade"></iframe>
113
+ '''
114
+
115
+
116
  # Define the welcome message and specific topics the chatbot can provide information about
117
  welcome_message = """
118
+ # 🌱 Welcome to GreenGuide!
 
119
  ## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp.
120
  """
121
 
 
126
  - Parks & Gardens
127
  - Thrift Stores
128
  - Attractions
 
129
  """
130
 
131
  # Create a Gradio HTML component
132
  def display_iframe():
133
  return iframe
134
  def display_image():
135
+ return "https://i.giphy.com/media/v1.Y2lkPTc5MGI3NjExZzdqMnkzcWpjbGhmM3hzcXp0MGpuaTF5djR4bjBxM3Biam5zbzNnMCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9cw/GxMnTi3hV3qaIgbgQL/giphy.gif"
136
+ #return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
137
  theme = gr.themes.Monochrome(
138
+ primary_hue="amber", #okay this did NOT work lmaoo
139
  secondary_hue="rose",
140
  ).set(
141
+ background_fill_primary='#CBE9A2', # BACKGROUND
142
+ background_fill_primary_dark='#768550',
143
+ background_fill_secondary='#768550', # BUTTON HOVER
144
+ background_fill_secondary_dark='#99a381', #LOADING BAR
145
+ border_color_accent='#768550',
146
+ border_color_accent_dark='#768550',
147
+ border_color_accent_subdued='#768550',
148
+ border_color_primary='#03a9f4',
149
+ block_border_color='#b3e5fc',
150
+ button_primary_background_fill='#768550',
151
+ button_primary_background_fill_dark='#768550'
152
  )
153
 
154
  # Setup the Gradio Blocks interface with custom layout components
155
+ with gr.Blocks(theme=theme) as demo:
156
+ gr.Image("chess-pieces.jpeg", show_label = False, show_share_button = False, show_download_button = False) #CHANGE !!
157
  gr.Markdown(welcome_message) # Display the formatted welcome message
158
  with gr.Row():
159
  with gr.Column():
 
164
  answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
165
  submit_button = gr.Button("Submit")
166
  submit_button.click(fn=query_model, inputs=question, outputs=answer)
167
+
168
+ gr.HTML(iframe)
169
 
170
 
171
  # Launch the Gradio app to allow user interaction
172
  demo.launch(share=True)
173
+
174
+ # import gradio as gr
175
+ # from sentence_transformers import SentenceTransformer, util
176
+ # import openai
177
+ # import os
178
+
179
+ # os.environ["TOKENIZERS_PARALLELISM"] = "false"
180
+
181
+ # # Initialize paths and model identifiers for easy configuration and maintenance
182
+ # filename = "output_topic_details.txt" # Path to the file storing chess-specific details
183
+ # retrieval_model_name = 'output/sentence-transformer-finetuned/'
184
+
185
+ # openai.api_key = os.environ["OPENAI_API_KEY"]
186
+
187
+ # system_message = "You are a eco-friendly travel chatbot specialized in providing information on eco-friendly restaurants, hotels, and attractions in NYC."
188
+ # # Initial system message to set the behavior of the assistant
189
+ # messages = [{"role": "system", "content": system_message}]
190
+
191
+ # # Attempt to load the necessary models and provide feedback on success or failure
192
+ # try:
193
+ # retrieval_model = SentenceTransformer(retrieval_model_name)
194
+ # print("Models loaded successfully.")
195
+ # except Exception as e:
196
+ # print(f"Failed to load models: {e}")
197
+
198
+ # def load_and_preprocess_text(filename):
199
+ # """
200
+ # Load and preprocess text from a file, removing empty lines and stripping whitespace.
201
+ # """
202
+ # try:
203
+ # with open(filename, 'r', encoding='utf-8') as file:
204
+ # segments = [line.strip() for line in file if line.strip()]
205
+ # print("Text loaded and preprocessed successfully.")
206
+ # return segments
207
+ # except Exception as e:
208
+ # print(f"Failed to load or preprocess text: {e}")
209
+ # return []
210
+
211
+ # segments = load_and_preprocess_text(filename)
212
+
213
+ # def find_relevant_segment(user_query, segments):
214
+ # """
215
+ # Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
216
+ # This version finds the best match based on the content of the query.
217
+ # """
218
+ # try:
219
+ # # Lowercase the query for better matching
220
+ # lower_query = user_query.lower()
221
+
222
+ # # Encode the query and the segments
223
+ # query_embedding = retrieval_model.encode(lower_query)
224
+ # segment_embeddings = retrieval_model.encode(segments)
225
+
226
+ # # Compute cosine similarities between the query and the segments
227
+ # similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
228
+
229
+ # # Find the index of the most similar segment
230
+ # best_idx = similarities.argmax()
231
+
232
+ # # Return the most relevant segment
233
+ # return segments[best_idx]
234
+ # except Exception as e:
235
+ # print(f"Error in finding relevant segment: {e}")
236
+ # return ""
237
+
238
+ # def generate_response(user_query, relevant_segment):
239
+ # """
240
+ # Generate a response emphasizing the bot's capability in providing eco-friendly travel information.
241
+ # """
242
+ # try:
243
+ # user_message = f"Here's the information on eco-friendly travel information: {relevant_segment}"
244
+
245
+ # # Append user's message to messages list
246
+ # messages.append({"role": "user", "content": user_message})
247
+
248
+ # response = openai.ChatCompletion.create(
249
+ # model="gpt-3.5-turbo",
250
+ # messages=messages,
251
+ # max_tokens=150,
252
+ # temperature=0.2,
253
+ # top_p=1,
254
+ # frequency_penalty=0,
255
+ # presence_penalty=0
256
+ # )
257
+
258
+ # # Extract the response text
259
+ # output_text = response['choices'][0]['message']['content'].strip()
260
+
261
+ # # Append assistant's message to messages list for context
262
+ # messages.append({"role": "assistant", "content": output_text})
263
+
264
+ # return output_text
265
+
266
+ # except Exception as e:
267
+ # print(f"Error in generating response: {e}")
268
+ # return f"Error in generating response: {e}"
269
+
270
+ # def query_model(question):
271
+ # """
272
+ # Process a question, find relevant information, and generate a response.
273
+ # """
274
+ # if question == "":
275
+ # return "Welcome to GreenGuide! Ask me anything about eco-friendly hotels, restaurants, and things to do in NYC."
276
+ # relevant_segment = find_relevant_segment(question, segments)
277
+ # if not relevant_segment:
278
+ # return "Could not find specific information. Please refine your question."
279
+ # response = generate_response(question, relevant_segment)
280
+ # return response
281
+
282
+ # # Define the welcome message and specific topics the chatbot can provide information about
283
+ # welcome_message = """
284
+ # # ♟️ Welcome to GreenGuide!
285
+
286
+ # ## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp.
287
+ # """
288
+
289
+ # topics = """
290
+ # ### Feel free to ask me anything things to do in the city!
291
+ # - Hotels
292
+ # - Restaurants
293
+ # - Parks & Gardens
294
+ # - Thrift Stores
295
+ # - Attractions
296
+
297
+ # """
298
+
299
+ # # Create a Gradio HTML component
300
+ # def display_iframe():
301
+ # return iframe
302
+ # def display_image():
303
+ # return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
304
+ # theme = gr.themes.Monochrome(
305
+ # primary_hue="amber",
306
+ # secondary_hue="rose",
307
+ # ).set(
308
+ # background_fill_primary='*primary_200',
309
+ # background_fill_primary_dark='*primary_200',
310
+ # background_fill_secondary='*secondary_300',
311
+ # background_fill_secondary_dark='*secondary_300',
312
+ # border_color_accent='*secondary_200',
313
+ # border_color_accent_dark='*secondary_600',
314
+ # border_color_accent_subdued='*secondary_200',
315
+ # border_color_primary='*secondary_300',
316
+ # block_border_color='*secondary_200',
317
+ # button_primary_background_fill='*secondary_300',
318
+ # button_primary_background_fill_dark='*secondary_300'
319
+ # )
320
+
321
+ # # Setup the Gradio Blocks interface with custom layout components
322
+ # with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
323
+ # gr.Markdown(welcome_message) # Display the formatted welcome message
324
+ # with gr.Row():
325
+ # with gr.Column():
326
+ # gr.Markdown(topics) # Show the topics on the left side
327
+ # with gr.Row():
328
+ # with gr.Column():
329
+ # question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
330
+ # answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
331
+ # submit_button = gr.Button("Submit")
332
+ # submit_button.click(fn=query_model, inputs=question, outputs=answer)
333
+
334
+
335
+ # # Launch the Gradio app to allow user interaction
336
+ # demo.launch(share=True)