Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -169,177 +169,4 @@ with gr.Blocks(theme=theme) as demo:
|
|
169 |
|
170 |
|
171 |
# Launch the Gradio app to allow user interaction
|
172 |
-
demo.launch(share=True)
|
173 |
-
|
174 |
-
# import gradio as gr
|
175 |
-
# from sentence_transformers import SentenceTransformer, util
|
176 |
-
# import openai
|
177 |
-
# import os
|
178 |
-
|
179 |
-
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
180 |
-
|
181 |
-
# # Initialize paths and model identifiers for easy configuration and maintenance
|
182 |
-
# filename = "output_topic_details.txt" # Path to the file storing chess-specific details
|
183 |
-
# retrieval_model_name = 'output/sentence-transformer-finetuned/'
|
184 |
-
|
185 |
-
# openai.api_key = os.environ["OPENAI_API_KEY"]
|
186 |
-
|
187 |
-
# system_message = "You are a eco-friendly travel chatbot specialized in providing information on eco-friendly restaurants, hotels, and attractions in NYC."
|
188 |
-
# # Initial system message to set the behavior of the assistant
|
189 |
-
# messages = [{"role": "system", "content": system_message}]
|
190 |
-
|
191 |
-
# # Attempt to load the necessary models and provide feedback on success or failure
|
192 |
-
# try:
|
193 |
-
# retrieval_model = SentenceTransformer(retrieval_model_name)
|
194 |
-
# print("Models loaded successfully.")
|
195 |
-
# except Exception as e:
|
196 |
-
# print(f"Failed to load models: {e}")
|
197 |
-
|
198 |
-
# def load_and_preprocess_text(filename):
|
199 |
-
# """
|
200 |
-
# Load and preprocess text from a file, removing empty lines and stripping whitespace.
|
201 |
-
# """
|
202 |
-
# try:
|
203 |
-
# with open(filename, 'r', encoding='utf-8') as file:
|
204 |
-
# segments = [line.strip() for line in file if line.strip()]
|
205 |
-
# print("Text loaded and preprocessed successfully.")
|
206 |
-
# return segments
|
207 |
-
# except Exception as e:
|
208 |
-
# print(f"Failed to load or preprocess text: {e}")
|
209 |
-
# return []
|
210 |
-
|
211 |
-
# segments = load_and_preprocess_text(filename)
|
212 |
-
|
213 |
-
# def find_relevant_segment(user_query, segments):
|
214 |
-
# """
|
215 |
-
# Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
|
216 |
-
# This version finds the best match based on the content of the query.
|
217 |
-
# """
|
218 |
-
# try:
|
219 |
-
# # Lowercase the query for better matching
|
220 |
-
# lower_query = user_query.lower()
|
221 |
-
|
222 |
-
# # Encode the query and the segments
|
223 |
-
# query_embedding = retrieval_model.encode(lower_query)
|
224 |
-
# segment_embeddings = retrieval_model.encode(segments)
|
225 |
-
|
226 |
-
# # Compute cosine similarities between the query and the segments
|
227 |
-
# similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
|
228 |
-
|
229 |
-
# # Find the index of the most similar segment
|
230 |
-
# best_idx = similarities.argmax()
|
231 |
-
|
232 |
-
# # Return the most relevant segment
|
233 |
-
# return segments[best_idx]
|
234 |
-
# except Exception as e:
|
235 |
-
# print(f"Error in finding relevant segment: {e}")
|
236 |
-
# return ""
|
237 |
-
|
238 |
-
# def generate_response(user_query, relevant_segment):
|
239 |
-
# """
|
240 |
-
# Generate a response emphasizing the bot's capability in providing eco-friendly travel information.
|
241 |
-
# """
|
242 |
-
# try:
|
243 |
-
# user_message = f"Here's the information on eco-friendly travel information: {relevant_segment}"
|
244 |
-
|
245 |
-
# # Append user's message to messages list
|
246 |
-
# messages.append({"role": "user", "content": user_message})
|
247 |
-
|
248 |
-
# response = openai.ChatCompletion.create(
|
249 |
-
# model="gpt-3.5-turbo",
|
250 |
-
# messages=messages,
|
251 |
-
# max_tokens=150,
|
252 |
-
# temperature=0.2,
|
253 |
-
# top_p=1,
|
254 |
-
# frequency_penalty=0,
|
255 |
-
# presence_penalty=0
|
256 |
-
# )
|
257 |
-
|
258 |
-
# # Extract the response text
|
259 |
-
# output_text = response['choices'][0]['message']['content'].strip()
|
260 |
-
|
261 |
-
# # Append assistant's message to messages list for context
|
262 |
-
# messages.append({"role": "assistant", "content": output_text})
|
263 |
-
|
264 |
-
# return output_text
|
265 |
-
|
266 |
-
# except Exception as e:
|
267 |
-
# print(f"Error in generating response: {e}")
|
268 |
-
# return f"Error in generating response: {e}"
|
269 |
-
|
270 |
-
# def query_model(question):
|
271 |
-
# """
|
272 |
-
# Process a question, find relevant information, and generate a response.
|
273 |
-
# """
|
274 |
-
# if question == "":
|
275 |
-
# return "Welcome to GreenGuide! Ask me anything about eco-friendly hotels, restaurants, and things to do in NYC."
|
276 |
-
# relevant_segment = find_relevant_segment(question, segments)
|
277 |
-
# if not relevant_segment:
|
278 |
-
# return "Could not find specific information. Please refine your question."
|
279 |
-
# response = generate_response(question, relevant_segment)
|
280 |
-
# return response
|
281 |
-
|
282 |
-
# # Define the HTML iframe content
|
283 |
-
|
284 |
-
# iframe = '''
|
285 |
-
# <iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d193595.2528001417!2d-74.1444872802558!3d40.69763123330436!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x89c24fa5d33f083b%3A0xc80b8f06e177fe62!2sNew%20York%2C%20NY!5e0!3m2!1sen!2sus!4v1722483445443!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy" referrerpolicy="no-referrer-when-downgrade"></iframe>
|
286 |
-
# '''
|
287 |
-
|
288 |
-
|
289 |
-
# # Define the welcome message and specific topics the chatbot can provide information about
|
290 |
-
# welcome_message = """
|
291 |
-
# # 🌱 Welcome to GreenGuide!
|
292 |
-
# ## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp.
|
293 |
-
# """
|
294 |
-
|
295 |
-
# topics = """
|
296 |
-
# ### Feel free to ask me anything things to do in the city!
|
297 |
-
# - Hotels (affordable, luxury)
|
298 |
-
# - Restaurants (regular, vegetarian, vegan)
|
299 |
-
# - Parks & Gardens
|
300 |
-
# - Thrift Stores
|
301 |
-
# - Attractions
|
302 |
-
# """
|
303 |
-
|
304 |
-
# # Create a Gradio HTML component
|
305 |
-
# def display_iframe():
|
306 |
-
# return iframe
|
307 |
-
# def display_image():
|
308 |
-
# return "https://i.giphy.com/media/v1.Y2lkPTc5MGI3NjExZzdqMnkzcWpjbGhmM3hzcXp0MGpuaTF5djR4bjBxM3Biam5zbzNnMCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9cw/GxMnTi3hV3qaIgbgQL/giphy.gif"
|
309 |
-
# #return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
|
310 |
-
# theme = gr.themes.Monochrome(
|
311 |
-
# primary_hue="amber", #okay this did NOT work lmaoo
|
312 |
-
# secondary_hue="rose",
|
313 |
-
# ).set(
|
314 |
-
# background_fill_primary='#CBE9A2', # BACKGROUND
|
315 |
-
# background_fill_primary_dark='#768550',
|
316 |
-
# background_fill_secondary='#768550', # BUTTON HOVER
|
317 |
-
# background_fill_secondary_dark='#99a381', #LOADING BAR
|
318 |
-
# border_color_accent='#768550',
|
319 |
-
# border_color_accent_dark='#768550',
|
320 |
-
# border_color_accent_subdued='#768550',
|
321 |
-
# border_color_primary='#03a9f4',
|
322 |
-
# block_border_color='#b3e5fc',
|
323 |
-
# button_primary_background_fill='#768550',
|
324 |
-
# button_primary_background_fill_dark='#768550'
|
325 |
-
# )
|
326 |
-
|
327 |
-
# # Setup the Gradio Blocks interface with custom layout components
|
328 |
-
# with gr.Blocks(theme=theme) as demo:
|
329 |
-
# gr.Image("header2.png", show_label = False, show_share_button = False, show_download_button = False) #CHANGE !!
|
330 |
-
# gr.Markdown(welcome_message) # Display the formatted welcome message
|
331 |
-
# with gr.Row():
|
332 |
-
# with gr.Column():
|
333 |
-
# gr.Markdown(topics) # Show the topics on the left side
|
334 |
-
# with gr.Row():
|
335 |
-
# with gr.Column():
|
336 |
-
# question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
|
337 |
-
# answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
|
338 |
-
# submit_button = gr.Button("Submit")
|
339 |
-
# submit_button.click(fn=query_model, inputs=question, outputs=answer)
|
340 |
-
|
341 |
-
# gr.HTML(iframe)
|
342 |
-
|
343 |
-
|
344 |
-
# # Launch the Gradio app to allow user interaction
|
345 |
-
# demo.launch(share=True)
|
|
|
169 |
|
170 |
|
171 |
# Launch the Gradio app to allow user interaction
|
172 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|