Spaces:
Runtime error
Runtime error
File size: 5,719 Bytes
1cc6224 b978945 ff9d83f 1cc6224 26cf91d 1cc6224 b978945 ff9d83f 1cc6224 fa96307 1cc6224 ff9d83f 1cc6224 5891c5c 1cc6224 5891c5c 1cc6224 4f57913 1cc6224 26cf91d 1cc6224 f5988d7 4f57913 f5988d7 4f57913 f30ff15 f5988d7 f30ff15 518f4f6 a759ed5 1cc6224 4caa340 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a sorting chatbot specialized in providing information about how to sort trash."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing information about how to sort your trash.
"""
try:
user_message = f"Here's the information on how to sort your trash: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=200,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to GreenGuide! Input the type of trash that you want to sort, and I will tell you which trash bin to put it in."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Description of trash is too vague. Please refine your question and provide more details."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# ♻️ Welcome to GreenGuide!
## Your AI-driven assistant for all trash sorting related queries. Created by Emma, Laura, and Saahiti of the 2024 Kode With Klossy CITY Camp.
"""
topics = """
## Feel free to ask me anything about how to sort your trash! Please provide the material the trash is made of in your question!
- Prescription bottles
- Soft plastic
- Hard plastic
- Glass
- Furniture
- Wood
- Food scraps
- Mercury-containing products
- Aluminum and tin cans
- Metal and appliances
- Electronics
- Paper
- Yard trimmings or yard waste
- Fabric or textiles
- Batteries
- Paint
- **Mixed materials that cannot be separated**
- **Items contaminated with food**
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="Which type of trash do you want to ask about?")
answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|