import time import random import whisper import gradio as gr from transformers import pipeline transcription_model = whisper.load_model("base") def transcribe(audio): # time.sleep(3) # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the transcription_model mel = whisper.log_mel_spectrogram(audio).to(transcription_model.device) # detect the spoken language _, probs = transcription_model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(transcription_model, mel, options) return result.text # p = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") # def transcribe(audio): # text = p(audio)["text"] # return text def user(user_message, history): return "", history + [[user_message, None]] def bot(history): bot_message = random.choice(["How are you?", "I wanted to tell you that...", "hehehe", "huihuihuihui", "I'm very hungry"]) history[-1][1] = "" for character in bot_message: history[-1][1] += character time.sleep(0.05) yield history css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #chatbot { min-height: 30rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; } #prompt-container { margin-bottom: 15px; margin-left: auto; margin-right: auto; } """ with gr.Blocks(css=css) as demo: gr.HTML( """