Spaces:
Runtime error
Runtime error
Commit
·
52fe7b2
1
Parent(s):
468ac2e
Create infer.py
Browse files
infer.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3 -u
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Run inference for pre-processed data with a trained model.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import ast
|
12 |
+
import logging
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
|
17 |
+
import editdistance
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
|
21 |
+
from fairseq.data.data_utils import post_process
|
22 |
+
from fairseq.logging.meters import StopwatchMeter, TimeMeter
|
23 |
+
|
24 |
+
|
25 |
+
logging.basicConfig()
|
26 |
+
logging.root.setLevel(logging.INFO)
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def add_asr_eval_argument(parser):
|
32 |
+
parser.add_argument("--kspmodel", default=None, help="sentence piece model")
|
33 |
+
parser.add_argument(
|
34 |
+
"--wfstlm", default=None, help="wfstlm on dictonary output units"
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--rnnt_decoding_type",
|
38 |
+
default="greedy",
|
39 |
+
help="wfstlm on dictonary\
|
40 |
+
output units",
|
41 |
+
)
|
42 |
+
try:
|
43 |
+
parser.add_argument(
|
44 |
+
"--lm-weight",
|
45 |
+
"--lm_weight",
|
46 |
+
type=float,
|
47 |
+
default=0.2,
|
48 |
+
help="weight for lm while interpolating with neural score",
|
49 |
+
)
|
50 |
+
except:
|
51 |
+
pass
|
52 |
+
parser.add_argument(
|
53 |
+
"--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level"
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--w2l-decoder",
|
57 |
+
choices=["viterbi", "kenlm", "fairseqlm"],
|
58 |
+
help="use a w2l decoder",
|
59 |
+
)
|
60 |
+
parser.add_argument("--lexicon", help="lexicon for w2l decoder")
|
61 |
+
parser.add_argument("--unit-lm", action="store_true", help="if using a unit lm")
|
62 |
+
parser.add_argument("--kenlm-model", "--lm-model", help="lm model for w2l decoder")
|
63 |
+
parser.add_argument("--beam-threshold", type=float, default=25.0)
|
64 |
+
parser.add_argument("--beam-size-token", type=float, default=100)
|
65 |
+
parser.add_argument("--word-score", type=float, default=1.0)
|
66 |
+
parser.add_argument("--unk-weight", type=float, default=-math.inf)
|
67 |
+
parser.add_argument("--sil-weight", type=float, default=0.0)
|
68 |
+
parser.add_argument(
|
69 |
+
"--dump-emissions",
|
70 |
+
type=str,
|
71 |
+
default=None,
|
72 |
+
help="if present, dumps emissions into this file and exits",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--dump-features",
|
76 |
+
type=str,
|
77 |
+
default=None,
|
78 |
+
help="if present, dumps features into this file and exits",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--load-emissions",
|
82 |
+
type=str,
|
83 |
+
default=None,
|
84 |
+
help="if present, loads emissions from this file",
|
85 |
+
)
|
86 |
+
return parser
|
87 |
+
|
88 |
+
|
89 |
+
def check_args(args):
|
90 |
+
# assert args.path is not None, "--path required for generation!"
|
91 |
+
# assert args.results_path is not None, "--results_path required for generation!"
|
92 |
+
assert (
|
93 |
+
not args.sampling or args.nbest == args.beam
|
94 |
+
), "--sampling requires --nbest to be equal to --beam"
|
95 |
+
assert (
|
96 |
+
args.replace_unk is None or args.raw_text
|
97 |
+
), "--replace-unk requires a raw text dataset (--raw-text)"
|
98 |
+
|
99 |
+
|
100 |
+
def get_dataset_itr(args, task, models):
|
101 |
+
return task.get_batch_iterator(
|
102 |
+
dataset=task.dataset(args.gen_subset),
|
103 |
+
max_tokens=args.max_tokens,
|
104 |
+
max_sentences=args.batch_size,
|
105 |
+
max_positions=(sys.maxsize, sys.maxsize),
|
106 |
+
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
|
107 |
+
required_batch_size_multiple=args.required_batch_size_multiple,
|
108 |
+
num_shards=args.num_shards,
|
109 |
+
shard_id=args.shard_id,
|
110 |
+
num_workers=args.num_workers,
|
111 |
+
data_buffer_size=args.data_buffer_size,
|
112 |
+
).next_epoch_itr(shuffle=False)
|
113 |
+
|
114 |
+
|
115 |
+
def process_predictions(
|
116 |
+
args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id
|
117 |
+
):
|
118 |
+
for hypo in hypos[: min(len(hypos), args.nbest)]:
|
119 |
+
hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu())
|
120 |
+
|
121 |
+
if "words" in hypo:
|
122 |
+
hyp_words = " ".join(hypo["words"])
|
123 |
+
else:
|
124 |
+
hyp_words = post_process(hyp_pieces, args.post_process)
|
125 |
+
|
126 |
+
if res_files is not None:
|
127 |
+
print(
|
128 |
+
"{} ({}-{})".format(hyp_pieces, speaker, id),
|
129 |
+
file=res_files["hypo.units"],
|
130 |
+
)
|
131 |
+
print(
|
132 |
+
"{} ({}-{})".format(hyp_words, speaker, id),
|
133 |
+
file=res_files["hypo.words"],
|
134 |
+
)
|
135 |
+
|
136 |
+
tgt_pieces = tgt_dict.string(target_tokens)
|
137 |
+
tgt_words = post_process(tgt_pieces, args.post_process)
|
138 |
+
|
139 |
+
if res_files is not None:
|
140 |
+
print(
|
141 |
+
"{} ({}-{})".format(tgt_pieces, speaker, id),
|
142 |
+
file=res_files["ref.units"],
|
143 |
+
)
|
144 |
+
print(
|
145 |
+
"{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"]
|
146 |
+
)
|
147 |
+
|
148 |
+
if not args.quiet:
|
149 |
+
logger.info("HYPO:" + hyp_words)
|
150 |
+
logger.info("TARGET:" + tgt_words)
|
151 |
+
logger.info("___________________")
|
152 |
+
|
153 |
+
hyp_words = hyp_words.split()
|
154 |
+
tgt_words = tgt_words.split()
|
155 |
+
return editdistance.eval(hyp_words, tgt_words), len(tgt_words)
|
156 |
+
|
157 |
+
|
158 |
+
def prepare_result_files(args):
|
159 |
+
def get_res_file(file_prefix):
|
160 |
+
if args.num_shards > 1:
|
161 |
+
file_prefix = f"{args.shard_id}_{file_prefix}"
|
162 |
+
path = os.path.join(
|
163 |
+
args.results_path,
|
164 |
+
"{}-{}-{}.txt".format(
|
165 |
+
file_prefix, os.path.basename(args.path), args.gen_subset
|
166 |
+
),
|
167 |
+
)
|
168 |
+
return open(path, "w", buffering=1)
|
169 |
+
|
170 |
+
if not args.results_path:
|
171 |
+
return None
|
172 |
+
|
173 |
+
return {
|
174 |
+
"hypo.words": get_res_file("hypo.word"),
|
175 |
+
"hypo.units": get_res_file("hypo.units"),
|
176 |
+
"ref.words": get_res_file("ref.word"),
|
177 |
+
"ref.units": get_res_file("ref.units"),
|
178 |
+
}
|
179 |
+
|
180 |
+
|
181 |
+
def optimize_models(args, use_cuda, models):
|
182 |
+
"""Optimize ensemble for generation"""
|
183 |
+
for model in models:
|
184 |
+
model.make_generation_fast_(
|
185 |
+
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
|
186 |
+
need_attn=args.print_alignment,
|
187 |
+
)
|
188 |
+
if args.fp16:
|
189 |
+
model.half()
|
190 |
+
if use_cuda:
|
191 |
+
model.cuda()
|
192 |
+
|
193 |
+
|
194 |
+
def apply_half(t):
|
195 |
+
if t.dtype is torch.float32:
|
196 |
+
return t.to(dtype=torch.half)
|
197 |
+
return t
|
198 |
+
|
199 |
+
|
200 |
+
class ExistingEmissionsDecoder(object):
|
201 |
+
def __init__(self, decoder, emissions):
|
202 |
+
self.decoder = decoder
|
203 |
+
self.emissions = emissions
|
204 |
+
|
205 |
+
def generate(self, models, sample, **unused):
|
206 |
+
ids = sample["id"].cpu().numpy()
|
207 |
+
try:
|
208 |
+
emissions = np.stack(self.emissions[ids])
|
209 |
+
except:
|
210 |
+
print([x.shape for x in self.emissions[ids]])
|
211 |
+
raise Exception("invalid sizes")
|
212 |
+
emissions = torch.from_numpy(emissions)
|
213 |
+
return self.decoder.decode(emissions)
|
214 |
+
|
215 |
+
|
216 |
+
def main(args, task=None, model_state=None):
|
217 |
+
check_args(args)
|
218 |
+
|
219 |
+
use_fp16 = args.fp16
|
220 |
+
if args.max_tokens is None and args.batch_size is None:
|
221 |
+
args.max_tokens = 4000000
|
222 |
+
logger.info(args)
|
223 |
+
|
224 |
+
use_cuda = torch.cuda.is_available() and not args.cpu
|
225 |
+
|
226 |
+
logger.info("| decoding with criterion {}".format(args.criterion))
|
227 |
+
|
228 |
+
task = tasks.setup_task(args)
|
229 |
+
|
230 |
+
# Load ensemble
|
231 |
+
if args.load_emissions:
|
232 |
+
models, criterions = [], []
|
233 |
+
task.load_dataset(args.gen_subset)
|
234 |
+
else:
|
235 |
+
logger.info("| loading model(s) from {}".format(args.path))
|
236 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
237 |
+
utils.split_paths(args.path, separator="\\"),
|
238 |
+
arg_overrides=ast.literal_eval(args.model_overrides),
|
239 |
+
task=task,
|
240 |
+
suffix=args.checkpoint_suffix,
|
241 |
+
strict=(args.checkpoint_shard_count == 1),
|
242 |
+
num_shards=args.checkpoint_shard_count,
|
243 |
+
state=model_state,
|
244 |
+
)
|
245 |
+
optimize_models(args, use_cuda, models)
|
246 |
+
task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task)
|
247 |
+
|
248 |
+
|
249 |
+
# Set dictionary
|
250 |
+
tgt_dict = task.target_dictionary
|
251 |
+
|
252 |
+
logger.info(
|
253 |
+
"| {} {} {} examples".format(
|
254 |
+
args.data, args.gen_subset, len(task.dataset(args.gen_subset))
|
255 |
+
)
|
256 |
+
)
|
257 |
+
|
258 |
+
# hack to pass transitions to W2lDecoder
|
259 |
+
if args.criterion == "asg_loss":
|
260 |
+
raise NotImplementedError("asg_loss is currently not supported")
|
261 |
+
# trans = criterions[0].asg.trans.data
|
262 |
+
# args.asg_transitions = torch.flatten(trans).tolist()
|
263 |
+
|
264 |
+
# Load dataset (possibly sharded)
|
265 |
+
itr = get_dataset_itr(args, task, models)
|
266 |
+
|
267 |
+
# Initialize generator
|
268 |
+
gen_timer = StopwatchMeter()
|
269 |
+
|
270 |
+
def build_generator(args):
|
271 |
+
w2l_decoder = getattr(args, "w2l_decoder", None)
|
272 |
+
if w2l_decoder == "viterbi":
|
273 |
+
from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
|
274 |
+
|
275 |
+
return W2lViterbiDecoder(args, task.target_dictionary)
|
276 |
+
elif w2l_decoder == "kenlm":
|
277 |
+
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
|
278 |
+
|
279 |
+
return W2lKenLMDecoder(args, task.target_dictionary)
|
280 |
+
elif w2l_decoder == "fairseqlm":
|
281 |
+
from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder
|
282 |
+
|
283 |
+
return W2lFairseqLMDecoder(args, task.target_dictionary)
|
284 |
+
else:
|
285 |
+
print(
|
286 |
+
"only flashlight decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment"
|
287 |
+
)
|
288 |
+
|
289 |
+
# please do not touch this unless you test both generate.py and infer.py with audio_pretraining task
|
290 |
+
generator = build_generator(args)
|
291 |
+
|
292 |
+
if args.load_emissions:
|
293 |
+
generator = ExistingEmissionsDecoder(
|
294 |
+
generator, np.load(args.load_emissions, allow_pickle=True)
|
295 |
+
)
|
296 |
+
logger.info("loaded emissions from " + args.load_emissions)
|
297 |
+
|
298 |
+
num_sentences = 0
|
299 |
+
|
300 |
+
if args.results_path is not None and not os.path.exists(args.results_path):
|
301 |
+
os.makedirs(args.results_path)
|
302 |
+
|
303 |
+
max_source_pos = (
|
304 |
+
utils.resolve_max_positions(
|
305 |
+
task.max_positions(), *[model.max_positions() for model in models]
|
306 |
+
),
|
307 |
+
)
|
308 |
+
|
309 |
+
if max_source_pos is not None:
|
310 |
+
max_source_pos = max_source_pos[0]
|
311 |
+
if max_source_pos is not None:
|
312 |
+
max_source_pos = max_source_pos[0] - 1
|
313 |
+
|
314 |
+
if args.dump_emissions:
|
315 |
+
emissions = {}
|
316 |
+
if args.dump_features:
|
317 |
+
features = {}
|
318 |
+
models[0].bert.proj = None
|
319 |
+
else:
|
320 |
+
res_files = prepare_result_files(args)
|
321 |
+
errs_t = 0
|
322 |
+
lengths_t = 0
|
323 |
+
with progress_bar.build_progress_bar(args, itr) as t:
|
324 |
+
wps_meter = TimeMeter()
|
325 |
+
for sample in t:
|
326 |
+
sample = utils.move_to_cuda(sample) if use_cuda else sample
|
327 |
+
if use_fp16:
|
328 |
+
sample = utils.apply_to_sample(apply_half, sample)
|
329 |
+
if "net_input" not in sample:
|
330 |
+
continue
|
331 |
+
|
332 |
+
prefix_tokens = None
|
333 |
+
if args.prefix_size > 0:
|
334 |
+
prefix_tokens = sample["target"][:, : args.prefix_size]
|
335 |
+
|
336 |
+
gen_timer.start()
|
337 |
+
if args.dump_emissions:
|
338 |
+
with torch.no_grad():
|
339 |
+
encoder_out = models[0](**sample["net_input"])
|
340 |
+
emm = models[0].get_normalized_probs(encoder_out, log_probs=True)
|
341 |
+
emm = emm.transpose(0, 1).cpu().numpy()
|
342 |
+
for i, id in enumerate(sample["id"]):
|
343 |
+
emissions[id.item()] = emm[i]
|
344 |
+
continue
|
345 |
+
elif args.dump_features:
|
346 |
+
with torch.no_grad():
|
347 |
+
encoder_out = models[0](**sample["net_input"])
|
348 |
+
feat = encoder_out["encoder_out"].transpose(0, 1).cpu().numpy()
|
349 |
+
for i, id in enumerate(sample["id"]):
|
350 |
+
padding = (
|
351 |
+
encoder_out["encoder_padding_mask"][i].cpu().numpy()
|
352 |
+
if encoder_out["encoder_padding_mask"] is not None
|
353 |
+
else None
|
354 |
+
)
|
355 |
+
features[id.item()] = (feat[i], padding)
|
356 |
+
continue
|
357 |
+
hypos = task.inference_step(generator, models, sample, prefix_tokens)
|
358 |
+
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
|
359 |
+
gen_timer.stop(num_generated_tokens)
|
360 |
+
|
361 |
+
for i, sample_id in enumerate(sample["id"].tolist()):
|
362 |
+
speaker = None
|
363 |
+
# id = task.dataset(args.gen_subset).ids[int(sample_id)]
|
364 |
+
id = sample_id
|
365 |
+
toks = (
|
366 |
+
sample["target"][i, :]
|
367 |
+
if "target_label" not in sample
|
368 |
+
else sample["target_label"][i, :]
|
369 |
+
)
|
370 |
+
target_tokens = utils.strip_pad(toks, tgt_dict.pad()).int().cpu()
|
371 |
+
# Process top predictions
|
372 |
+
errs, length = process_predictions(
|
373 |
+
args,
|
374 |
+
hypos[i],
|
375 |
+
None,
|
376 |
+
tgt_dict,
|
377 |
+
target_tokens,
|
378 |
+
res_files,
|
379 |
+
speaker,
|
380 |
+
id,
|
381 |
+
)
|
382 |
+
errs_t += errs
|
383 |
+
lengths_t += length
|
384 |
+
|
385 |
+
wps_meter.update(num_generated_tokens)
|
386 |
+
t.log({"wps": round(wps_meter.avg)})
|
387 |
+
num_sentences += (
|
388 |
+
sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
|
389 |
+
)
|
390 |
+
|
391 |
+
wer = None
|
392 |
+
if args.dump_emissions:
|
393 |
+
emm_arr = []
|
394 |
+
for i in range(len(emissions)):
|
395 |
+
emm_arr.append(emissions[i])
|
396 |
+
np.save(args.dump_emissions, emm_arr)
|
397 |
+
logger.info(f"saved {len(emissions)} emissions to {args.dump_emissions}")
|
398 |
+
elif args.dump_features:
|
399 |
+
feat_arr = []
|
400 |
+
for i in range(len(features)):
|
401 |
+
feat_arr.append(features[i])
|
402 |
+
np.save(args.dump_features, feat_arr)
|
403 |
+
logger.info(f"saved {len(features)} emissions to {args.dump_features}")
|
404 |
+
else:
|
405 |
+
if lengths_t > 0:
|
406 |
+
wer = errs_t * 100.0 / lengths_t
|
407 |
+
logger.info(f"WER: {wer}")
|
408 |
+
|
409 |
+
logger.info(
|
410 |
+
"| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
|
411 |
+
"sentences/s, {:.2f} tokens/s)".format(
|
412 |
+
num_sentences,
|
413 |
+
gen_timer.n,
|
414 |
+
gen_timer.sum,
|
415 |
+
num_sentences / gen_timer.sum,
|
416 |
+
1.0 / gen_timer.avg,
|
417 |
+
)
|
418 |
+
)
|
419 |
+
logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam))
|
420 |
+
return task, wer
|
421 |
+
|
422 |
+
|
423 |
+
def make_parser():
|
424 |
+
parser = options.get_generation_parser()
|
425 |
+
parser = add_asr_eval_argument(parser)
|
426 |
+
return parser
|
427 |
+
|
428 |
+
|
429 |
+
def cli_main():
|
430 |
+
parser = make_parser()
|
431 |
+
args = options.parse_args_and_arch(parser)
|
432 |
+
main(args)
|
433 |
+
|
434 |
+
|
435 |
+
if __name__ == "__main__":
|
436 |
+
cli_main()
|