Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,14 +16,318 @@ from diffusers import AutoencoderKL, EulerDiscreteScheduler
|
|
16 |
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
19 |
+
|
20 |
+
device = "cuda"
|
21 |
+
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
22 |
+
ckpt_dir = f'{root_dir}/weights/Kolors'
|
23 |
+
|
24 |
+
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
|
25 |
+
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")
|
26 |
+
|
27 |
+
# Load models
|
28 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
29 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
30 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
31 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
32 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
33 |
+
|
34 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
35 |
+
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
|
36 |
+
ignore_mismatched_sizes=True
|
37 |
+
).to(dtype=torch.float16, device=device)
|
38 |
+
|
39 |
+
ip_img_size = 336
|
40 |
+
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
41 |
+
|
42 |
+
pipe = StableDiffusionXLPipeline(
|
43 |
+
vae=vae,
|
44 |
+
text_encoder=text_encoder,
|
45 |
+
tokenizer=tokenizer,
|
46 |
+
unet=unet,
|
47 |
+
scheduler=scheduler,
|
48 |
+
image_encoder=image_encoder,
|
49 |
+
feature_extractor=clip_image_processor,
|
50 |
+
force_zeros_for_empty_prompt=False
|
51 |
+
).to(device)
|
52 |
+
|
53 |
+
if hasattr(pipe.unet, 'encoder_hid_proj'):
|
54 |
+
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
|
55 |
+
|
56 |
+
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
57 |
+
|
58 |
+
MAX_SEED = np.iinfo(np.int32).max
|
59 |
+
MAX_IMAGE_SIZE = 1024
|
60 |
+
|
61 |
+
# ----------------------------------------------
|
62 |
+
# infer ํจ์ (๊ธฐ์กด ๋ก์ง ๊ทธ๋๋ก ์ ์ง)
|
63 |
+
# ----------------------------------------------
|
64 |
+
@spaces.GPU(duration=80)
|
65 |
+
def infer(
|
66 |
+
user_prompt,
|
67 |
+
ip_adapter_image,
|
68 |
+
ip_adapter_scale=0.5,
|
69 |
+
negative_prompt="",
|
70 |
+
seed=100,
|
71 |
+
randomize_seed=False,
|
72 |
+
width=1024,
|
73 |
+
height=1024,
|
74 |
+
guidance_scale=5.0,
|
75 |
+
num_inference_steps=50,
|
76 |
+
progress=gr.Progress(track_tqdm=True)
|
77 |
+
):
|
78 |
+
# ์จ๊ฒจ์ง(๊ธฐ๋ณธ/ํ์) ํ๋กฌํํธ
|
79 |
+
hidden_prompt = (
|
80 |
+
"Ghibli Studio style, Charming hand-drawn anime-style illustration"
|
81 |
+
)
|
82 |
+
|
83 |
+
# ์ค์ ๋ก ํ์ดํ๋ผ์ธ์ ์ ๋ฌํ ์ต์ข
ํ๋กฌํํธ
|
84 |
+
prompt = f"{hidden_prompt}, {user_prompt}"
|
85 |
+
|
86 |
+
if randomize_seed:
|
87 |
+
seed = random.randint(0, MAX_SEED)
|
88 |
+
|
89 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
90 |
+
pipe.to("cuda")
|
91 |
+
image_encoder.to("cuda")
|
92 |
+
pipe.image_encoder = image_encoder
|
93 |
+
pipe.set_ip_adapter_scale([ip_adapter_scale])
|
94 |
+
|
95 |
+
image = pipe(
|
96 |
+
prompt=prompt,
|
97 |
+
ip_adapter_image=[ip_adapter_image],
|
98 |
+
negative_prompt=negative_prompt,
|
99 |
+
height=height,
|
100 |
+
width=width,
|
101 |
+
num_inference_steps=num_inference_steps,
|
102 |
+
guidance_scale=guidance_scale,
|
103 |
+
num_images_per_prompt=1,
|
104 |
+
generator=generator,
|
105 |
+
).images[0]
|
106 |
+
|
107 |
+
return image, seed
|
108 |
+
|
109 |
+
examples = [
|
110 |
+
[
|
111 |
+
"background alps",
|
112 |
+
"gh0.webp",
|
113 |
+
0.5
|
114 |
+
],
|
115 |
+
[
|
116 |
+
"dancing",
|
117 |
+
"gh5.jpg",
|
118 |
+
0.5
|
119 |
+
],
|
120 |
+
[
|
121 |
+
"smile",
|
122 |
+
"gh2.jpg",
|
123 |
+
0.5
|
124 |
+
],
|
125 |
+
[
|
126 |
+
"3d style",
|
127 |
+
"gh3.webp",
|
128 |
+
0.6
|
129 |
+
],
|
130 |
+
[
|
131 |
+
"with Pikachu",
|
132 |
+
"gh4.jpg",
|
133 |
+
0.5
|
134 |
+
],
|
135 |
+
[
|
136 |
+
"Ghibli Studio style, Charming hand-drawn anime-style illustration",
|
137 |
+
"gh7.jpg",
|
138 |
+
0.5
|
139 |
+
],
|
140 |
+
[
|
141 |
+
"Ghibli Studio style, Charming hand-drawn anime-style illustration",
|
142 |
+
"gh1.jpg",
|
143 |
+
0.5
|
144 |
+
],
|
145 |
+
]
|
146 |
+
|
147 |
+
# --------------------------
|
148 |
+
# ๊ฐ์ ๋ UI๋ฅผ ์ํ CSS
|
149 |
+
# --------------------------
|
150 |
+
css = """
|
151 |
+
body {
|
152 |
+
background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
|
153 |
+
font-family: 'Helvetica Neue', Arial, sans-serif;
|
154 |
+
color: #333;
|
155 |
+
margin: 0;
|
156 |
+
padding: 0;
|
157 |
+
}
|
158 |
+
|
159 |
+
#col-container {
|
160 |
+
margin: 0 auto !important;
|
161 |
+
max-width: 720px;
|
162 |
+
background: rgba(255,255,255,0.85);
|
163 |
+
border-radius: 16px;
|
164 |
+
padding: 2rem;
|
165 |
+
box-shadow: 0 8px 24px rgba(0,0,0,0.1);
|
166 |
+
}
|
167 |
+
|
168 |
+
#header-title {
|
169 |
+
text-align: center;
|
170 |
+
font-size: 2rem;
|
171 |
+
font-weight: bold;
|
172 |
+
margin-bottom: 1rem;
|
173 |
+
}
|
174 |
+
|
175 |
+
#prompt-row {
|
176 |
+
display: flex;
|
177 |
+
gap: 0.5rem;
|
178 |
+
align-items: center;
|
179 |
+
margin-bottom: 1rem;
|
180 |
+
}
|
181 |
+
|
182 |
+
#prompt-text {
|
183 |
+
flex: 1;
|
184 |
+
}
|
185 |
+
|
186 |
+
#result img {
|
187 |
+
object-position: top;
|
188 |
+
border-radius: 8px;
|
189 |
+
}
|
190 |
+
|
191 |
+
#result .image-container {
|
192 |
+
height: 100%;
|
193 |
+
}
|
194 |
+
|
195 |
+
.gr-button {
|
196 |
+
background-color: #2E8BFB !important;
|
197 |
+
color: white !important;
|
198 |
+
border: none !important;
|
199 |
+
transition: background-color 0.2s ease;
|
200 |
+
}
|
201 |
+
|
202 |
+
.gr-button:hover {
|
203 |
+
background-color: #186EDB !important;
|
204 |
+
}
|
205 |
+
|
206 |
+
.gr-slider input[type=range] {
|
207 |
+
accent-color: #2E8BFB !important;
|
208 |
+
}
|
209 |
+
|
210 |
+
.gr-box {
|
211 |
+
background-color: #fafafa !important;
|
212 |
+
border: 1px solid #ddd !important;
|
213 |
+
border-radius: 8px !important;
|
214 |
+
padding: 1rem !important;
|
215 |
+
}
|
216 |
+
|
217 |
+
#advanced-settings {
|
218 |
+
margin-top: 1rem;
|
219 |
+
border-radius: 8px;
|
220 |
+
}
|
221 |
+
"""
|
222 |
+
|
223 |
+
with gr.Blocks(theme="apriel", css=css) as demo:
|
224 |
+
with gr.Column(elem_id="col-container"):
|
225 |
+
gr.Markdown("<div id='header-title'>Ghibli Meme Studio</div>")
|
226 |
+
gr.Markdown("<div id='header-title' style='font-size: 12px;'>Community: https://discord.gg/openfreeai</div>")
|
227 |
+
|
228 |
+
# ์๋จ: ํ๋กฌํํธ ์
๋ ฅ + ์คํ ๋ฒํผ
|
229 |
+
with gr.Row(elem_id="prompt-row"):
|
230 |
+
prompt = gr.Text(
|
231 |
+
label="Prompt",
|
232 |
+
show_label=False,
|
233 |
+
max_lines=1,
|
234 |
+
placeholder="Enter your prompt",
|
235 |
+
elem_id="prompt-text",
|
236 |
+
)
|
237 |
+
run_button = gr.Button("Run", elem_id="run-button")
|
238 |
+
|
239 |
+
# ๊ฐ์ด๋ฐ: ์ด๋ฏธ์ง ์
๋ ฅ๊ณผ ์ฌ๋ผ์ด๋, ๊ฒฐ๊ณผ ์ด๋ฏธ์ง
|
240 |
+
with gr.Row():
|
241 |
+
with gr.Column():
|
242 |
+
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
|
243 |
+
ip_adapter_scale = gr.Slider(
|
244 |
+
label="Image influence scale",
|
245 |
+
info="Use 1 for creating variations",
|
246 |
+
minimum=0.0,
|
247 |
+
maximum=1.0,
|
248 |
+
step=0.05,
|
249 |
+
value=0.5,
|
250 |
+
)
|
251 |
+
result = gr.Image(label="Result", elem_id="result")
|
252 |
+
|
253 |
+
# ํ๋จ: ๊ณ ๊ธ ์ค์ (Accordion)
|
254 |
+
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
|
255 |
+
negative_prompt = gr.Text(
|
256 |
+
label="Negative prompt",
|
257 |
+
max_lines=2,
|
258 |
+
placeholder=(
|
259 |
+
"Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, "
|
260 |
+
"missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, "
|
261 |
+
"normal quality, jpeg artifacts, signature, watermark, username, blurry, "
|
262 |
+
"artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, "
|
263 |
+
"3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)"
|
264 |
+
),
|
265 |
+
)
|
266 |
+
seed = gr.Slider(
|
267 |
+
label="Seed",
|
268 |
+
minimum=0,
|
269 |
+
maximum=MAX_SEED,
|
270 |
+
step=1,
|
271 |
+
value=0,
|
272 |
+
)
|
273 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
274 |
+
with gr.Row():
|
275 |
+
width = gr.Slider(
|
276 |
+
label="Width",
|
277 |
+
minimum=256,
|
278 |
+
maximum=MAX_IMAGE_SIZE,
|
279 |
+
step=32,
|
280 |
+
value=1024,
|
281 |
+
)
|
282 |
+
height = gr.Slider(
|
283 |
+
label="Height",
|
284 |
+
minimum=256,
|
285 |
+
maximum=MAX_IMAGE_SIZE,
|
286 |
+
step=32,
|
287 |
+
value=1024,
|
288 |
+
)
|
289 |
+
with gr.Row():
|
290 |
+
guidance_scale = gr.Slider(
|
291 |
+
label="Guidance scale",
|
292 |
+
minimum=0.0,
|
293 |
+
maximum=10.0,
|
294 |
+
step=0.1,
|
295 |
+
value=5.0,
|
296 |
+
)
|
297 |
+
num_inference_steps = gr.Slider(
|
298 |
+
label="Number of inference steps",
|
299 |
+
minimum=1,
|
300 |
+
maximum=100,
|
301 |
+
step=1,
|
302 |
+
value=50,
|
303 |
+
)
|
304 |
+
|
305 |
+
# ์์๋ค
|
306 |
+
gr.Examples(
|
307 |
+
examples=examples,
|
308 |
+
fn=infer,
|
309 |
+
inputs=[prompt, ip_adapter_image, ip_adapter_scale],
|
310 |
+
outputs=[result, seed],
|
311 |
+
cache_examples="lazy"
|
312 |
+
)
|
313 |
+
|
314 |
+
# ๋ฒํผ ํด๋ฆญ/ํ๋กฌํํธ ์ํฐ ์ ์คํ
|
315 |
+
gr.on(
|
316 |
+
triggers=[run_button.click, prompt.submit],
|
317 |
+
fn=infer,
|
318 |
+
inputs=[
|
319 |
+
prompt,
|
320 |
+
ip_adapter_image,
|
321 |
+
ip_adapter_scale,
|
322 |
+
negative_prompt,
|
323 |
+
seed,
|
324 |
+
randomize_seed,
|
325 |
+
width,
|
326 |
+
height,
|
327 |
+
guidance_scale,
|
328 |
+
num_inference_steps
|
329 |
+
],
|
330 |
+
outputs=[result, seed]
|
331 |
+
)
|
332 |
+
|
333 |
+
demo.queue().launch()
|