File size: 3,733 Bytes
3f78c39
d9a0196
 
 
 
 
 
 
 
 
 
 
7a6824f
 
0efe14d
 
d9a0196
 
 
 
 
 
 
 
e54bd69
c7d977c
 
d9a0196
 
 
 
 
 
 
 
 
7a6824f
 
 
d9a0196
 
7a6824f
d9a0196
 
c7d977c
d9a0196
bad5227
a7b5bcb
bad5227
5b847dd
a7b5bcb
 
 
7a6824f
d9a0196
 
a7b5bcb
 
7a6824f
 
d9a0196
 
 
 
 
7a6824f
d9a0196
 
 
7a6824f
 
 
d9a0196
 
7a6824f
a7b5bcb
 
7a6824f
 
 
 
d9a0196
 
 
 
 
7a6824f
d9a0196
 
 
 
 
7a6824f
 
d9a0196
a7b5bcb
d9a0196
 
 
 
 
4112e9f
7a6824f
d9a0196
 
 
 
 
 
 
 
 
7a6824f
d9a0196
 
 
7a6824f
d9a0196
 
 
7a6824f
a7b5bcb
 
d9a0196
0efe14d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
""" TypeGPT
@author: NiansuhAI
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()





# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('API_KEY')  # Replace with your token
)

# Create supported models
model_links = {
    "GPT-4o": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
    "GPT-4": "meta-llama/Meta-Llama-3.1-405B-Instruct",
    "GPT-3,5": "meta-llama/Meta-Llama-3.1-70B-Instruct",
}

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None
    



# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Выбрать модель GPT", models)

#Add reset button to clear conversation
st.sidebar.button('New Chat', on_click=reset_conversation) #Reset button

# Create a temperature slider
temp_values = st.sidebar.slider('ChatGPT Temperature', 0.0, 1.0, (0.5))
st.sidebar.markdown("Temperature in ChatGPT affects the quality and coherence of the generated text.")
st.sidebar.markdown("**For optimum results, we recommend selecting a temperature between 0.5 and 0.7**")                  


# Create model description
st.sidebar.markdown("*The content created may not be accurate.*")
st.sidebar.markdown("\n Our website: [Chat-GPT-Free.com](https://chat-gpt-free.com/).")


if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'[Chat-GPT-Free.com](https://chat-gpt-free.com/) with AI model {selected_model}')
# st.title(f'Chat-GPT-Free is now using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])



# Accept user input
if prompt := st.chat_input(f"Hi. I'm {selected_model}. How can I help you today?"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,#0.5,
                stream=True,
                max_tokens=3000,
            )
    
            response = st.write_stream(stream)

        except Exception as e:
            # st.empty()
            response = "The GPT is overloaded!\
                    \n Repeat your request later :( "
            st.write(response)

            

    st.session_state.messages.append({"role": "assistant", "content": response})