File size: 4,002 Bytes
3f78c39
d9a0196
 
 
 
 
 
 
 
 
 
 
7a6824f
 
0efe14d
 
d9a0196
 
 
 
 
 
 
 
b71abe0
17d6d48
c7d977c
d9a0196
 
 
 
 
 
 
 
 
7a6824f
 
 
d9a0196
 
7a6824f
d9a0196
 
c7d977c
d9a0196
bad5227
 
 
5b847dd
c7d977c
 
 
7a6824f
d9a0196
 
c7d977c
 
7a6824f
 
d9a0196
 
 
 
 
7a6824f
d9a0196
 
 
7a6824f
 
 
d9a0196
 
7a6824f
f9d53f3
c7d977c
7a6824f
 
 
 
d9a0196
 
 
 
 
7a6824f
d9a0196
 
 
 
 
7a6824f
 
d9a0196
c7d977c
d9a0196
 
 
 
 
4112e9f
7a6824f
d9a0196
 
 
 
 
 
 
 
 
7a6824f
d9a0196
 
 
7a6824f
d9a0196
 
 
7a6824f
81eddea
 
d9a0196
0efe14d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
""" TypeGPT
@author: NiansuhAI
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()





# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('API_KEY')  # Replace with your token
)

# Create supported models
model_links = {
    "GPT-4o": "mistralai/Mistral-Nemo-Instruct-2407",
    "GPT-4": "meta-llama/Meta-Llama-3-8B-Instruct",
    "GPT-3,5": "meta-llama/Meta-Llama-3.1-70B-Instruct",
}

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None
    



# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Выбрать модель GPT", models)

#Add reset button to clear conversation
st.sidebar.button('Новый чат', on_click=reset_conversation) #Reset button

# Create a temperature slider
temp_values = st.sidebar.slider('Температура ChatGPT', 0.0, 1.0, (0.5))
st.sidebar.markdown("Температура в ChatGPT влияет на качество и связность генерируемого текста.")
st.sidebar.markdown("**Для оптимального результата рекомендуем выбирать температуру в диапазоне от 0,5 до 0,7**.")                  


# Create model description
st.sidebar.markdown("*Созданный контент может быть неточным.*")
st.sidebar.markdown("\n Наш сайт: [GPT-ChatBot.ru](https://gpt-chatbot.ru/).")


if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'[GPT-ChatBot.ru](https://gpt-chatbot.ru/) с моделью {selected_model}')
# st.title(f'GPT-ChatBot сейчас использует {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])



# Accept user input
if prompt := st.chat_input(f"Привет. Я {selected_model}. Как я могу вам помочь сегодня?"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,#0.5,
                stream=True,
                max_tokens=3000,
            )
    
            response = st.write_stream(stream)

        except Exception as e:
            # st.empty()
            response = "Похоже, чат перегружен!\
                    \n Повторите свой запрос позже:( "
            st.write(response)

            

    st.session_state.messages.append({"role": "assistant", "content": response})