Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
import numpy as np | |
import random | |
import os | |
import yaml | |
from pathlib import Path | |
import imageio | |
import tempfile | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import shutil | |
# --- Import necessary classes from the provided files --- | |
from inference import ( | |
create_ltx_video_pipeline, | |
create_latent_upsampler, | |
load_image_to_tensor_with_resize_and_crop, | |
seed_everething, | |
get_device, | |
calculate_padding, | |
load_media_file | |
) | |
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline | |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
# --- Global constants from user's request and YAML --- | |
YAML_CONFIG_STRING = """ | |
pipeline_type: multi-scale | |
checkpoint_path: "ltxv-13b-0.9.7-distilled.safetensors" # This will be replaced by the rc3 version | |
downscale_factor: 0.6666666 | |
spatial_upscaler_model_path: "ltxv-spatial-upscaler-0.9.7.safetensors" | |
stg_mode: "attention_values" # options: "attention_values", "attention_skip", "residual", "transformer_block" | |
decode_timestep: 0.05 | |
decode_noise_scale: 0.025 | |
text_encoder_model_name_or_path: "PixArt-alpha/PixArt-XL-2-1024-MS" | |
precision: "bfloat16" | |
sampler: "from_checkpoint" # options: "uniform", "linear-quadratic", "from_checkpoint" | |
prompt_enhancement_words_threshold: 120 | |
prompt_enhancer_image_caption_model_name_or_path: "MiaoshouAI/Florence-2-large-PromptGen-v2.0" | |
prompt_enhancer_llm_model_name_or_path: "unsloth/Llama-3.2-3B-Instruct" | |
stochastic_sampling: false | |
first_pass: | |
timesteps: [1.0000, 0.9937, 0.9875, 0.9812, 0.9750, 0.9094, 0.7250] | |
guidance_scale: 1 | |
stg_scale: 0 | |
rescaling_scale: 1 | |
skip_block_list: [42] | |
second_pass: | |
timesteps: [0.9094, 0.7250, 0.4219] | |
guidance_scale: 1 | |
stg_scale: 0 | |
rescaling_scale: 1 | |
skip_block_list: [42] | |
""" | |
PIPELINE_CONFIG_YAML = yaml.safe_load(YAML_CONFIG_STRING) | |
# Model specific paths (to be downloaded) | |
DISTILLED_MODEL_REPO = "LTX-Colab/LTX-Video-Preview" | |
DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors" | |
UPSCALER_REPO = "Lightricks/LTX-Video" | |
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280) | |
MAX_NUM_FRAMES = 257 | |
# --- Global variables for loaded models --- | |
pipeline_instance = None | |
latent_upsampler_instance = None | |
models_dir = "downloaded_models_gradio_cpu_init" | |
Path(models_dir).mkdir(parents=True, exist_ok=True) | |
print("Downloading models (if not present)...") | |
distilled_model_actual_path = hf_hub_download( | |
repo_id=DISTILLED_MODEL_REPO, | |
filename=DISTILLED_MODEL_FILENAME, | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path | |
print(f"Distilled model path: {distilled_model_actual_path}") | |
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] | |
spatial_upscaler_actual_path = hf_hub_download( | |
repo_id=UPSCALER_REPO, | |
filename=SPATIAL_UPSCALER_FILENAME, | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path | |
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}") | |
print("Creating LTX Video pipeline on CPU...") | |
pipeline_instance = create_ltx_video_pipeline( | |
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"], | |
precision=PIPELINE_CONFIG_YAML["precision"], | |
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], | |
sampler=PIPELINE_CONFIG_YAML["sampler"], | |
device="cpu", | |
enhance_prompt=False, | |
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"], | |
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"], | |
) | |
print("LTX Video pipeline created on CPU.") | |
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"): | |
print("Creating latent upsampler on CPU...") | |
latent_upsampler_instance = create_latent_upsampler( | |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], | |
device="cpu" | |
) | |
print("Latent upsampler created on CPU.") | |
target_inference_device = "cuda" | |
print(f"Target inference device: {target_inference_device}") | |
pipeline_instance.to(target_inference_device) | |
latent_upsampler_instance.to(target_inference_device) | |
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath, | |
height_ui, width_ui, mode, | |
ui_steps, num_frames_ui, | |
ui_frames_to_use, | |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, | |
progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed_ui = random.randint(0, 2**32 - 1) | |
seed_everething(int(seed_ui)) | |
actual_height = int(height_ui) | |
actual_width = int(width_ui) | |
actual_num_frames = int(num_frames_ui) | |
height_padded = ((actual_height - 1) // 32 + 1) * 32 | |
width_padded = ((actual_width - 1) // 32 + 1) * 32 | |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1 | |
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded) | |
call_kwargs = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"height": height_padded, | |
"width": width_padded, | |
"num_frames": num_frames_padded, | |
"frame_rate": 30, | |
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)), | |
"output_type": "pt", # Crucial: pipeline will output [0,1] range tensors | |
"conditioning_items": None, | |
"media_items": None, | |
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], | |
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], | |
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], | |
"image_cond_noise_scale": 0.15, | |
"is_video": True, | |
"vae_per_channel_normalize": True, | |
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), | |
"offload_to_cpu": False, | |
"enhance_prompt": False, | |
} | |
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values") | |
if stg_mode_str.lower() in ["stg_av", "attention_values"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues | |
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip | |
elif stg_mode_str.lower() in ["stg_r", "residual"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual | |
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock | |
else: | |
raise ValueError(f"Invalid stg_mode: {stg_mode_str}") | |
if mode == "image-to-video" and input_image_filepath: | |
try: | |
media_tensor = load_image_to_tensor_with_resize_and_crop( | |
input_image_filepath, actual_height, actual_width | |
) | |
media_tensor = torch.nn.functional.pad(media_tensor, padding_values) | |
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)] | |
except Exception as e: | |
print(f"Error loading image {input_image_filepath}: {e}") | |
raise gr.Error(f"Could not load image: {e}") | |
elif mode == "video-to-video" and input_video_filepath: | |
try: | |
call_kwargs["media_items"] = load_media_file( | |
media_path=input_video_filepath, | |
height=actual_height, | |
width=actual_width, | |
max_frames=int(ui_frames_to_use), | |
padding=padding_values | |
).to(target_inference_device) | |
except Exception as e: | |
print(f"Error loading video {input_video_filepath}: {e}") | |
raise gr.Error(f"Could not load video: {e}") | |
print(f"Moving models to {target_inference_device} for inference...") | |
active_latent_upsampler = None | |
if improve_texture_flag and latent_upsampler_instance: | |
active_latent_upsampler = latent_upsampler_instance | |
#print("Models moved.") | |
result_images_tensor = None | |
try: | |
if improve_texture_flag: | |
if not active_latent_upsampler: | |
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.") | |
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler) | |
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() | |
first_pass_args["guidance_scale"] = float(ui_guidance_scale) | |
if "timesteps" not in first_pass_args: | |
first_pass_args["num_inference_steps"] = int(ui_steps) | |
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy() | |
second_pass_args["guidance_scale"] = float(ui_guidance_scale) | |
multi_scale_call_kwargs = call_kwargs.copy() | |
multi_scale_call_kwargs.update({ | |
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"], | |
"first_pass": first_pass_args, | |
"second_pass": second_pass_args, | |
}) | |
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}) on {target_inference_device}") | |
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images | |
else: | |
single_pass_call_kwargs = call_kwargs.copy() | |
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) | |
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps) | |
single_pass_call_kwargs.pop("first_pass", None) | |
single_pass_call_kwargs.pop("second_pass", None) | |
single_pass_call_kwargs.pop("downscale_factor", None) | |
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}) on {target_inference_device}") | |
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images | |
if result_images_tensor is None: | |
raise gr.Error("Generation failed.") | |
pad_left, pad_right, pad_top, pad_bottom = padding_values | |
slice_h_end = -pad_bottom if pad_bottom > 0 else None | |
slice_w_end = -pad_right if pad_right > 0 else None | |
result_images_tensor = result_images_tensor[ | |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end | |
] | |
# The pipeline with output_type="pt" should return tensors in the [0, 1] range. | |
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() | |
# Clip to ensure values are indeed in [0, 1] before scaling to uint8 | |
video_np = np.clip(video_np, 0, 1) | |
video_np = (video_np * 255).astype(np.uint8) | |
temp_dir = tempfile.mkdtemp() | |
timestamp = random.randint(10000,99999) | |
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
progress(frame_idx / video_np.shape[0], desc="Saving video") | |
video_writer.append_data(video_np[frame_idx]) | |
except Exception as e: | |
print(f"Error saving video with macro_block_size=1: {e}") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)") | |
video_writer.append_data(video_np[frame_idx]) | |
except Exception as e2: | |
print(f"Fallback video saving error: {e2}") | |
raise gr.Error(f"Failed to save video: {e2}") | |
if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper): | |
if os.path.exists(input_image_filepath.name): # Check if it's already closed by Gradio | |
try: | |
input_image_filepath.close() | |
os.remove(input_image_filepath.name) | |
except: pass # May already be closed/removed | |
elif input_image_filepath and os.path.exists(input_image_filepath) and input_image_filepath.startswith(tempfile.gettempdir()): | |
try: os.remove(input_image_filepath) # If Gradio passed a path to a temp file | |
except: pass | |
if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper): | |
if os.path.exists(input_video_filepath.name): | |
try: | |
input_video_filepath.close() | |
os.remove(input_video_filepath.name) | |
except: pass | |
elif input_video_filepath and os.path.exists(input_video_filepath) and input_video_filepath.startswith(tempfile.gettempdir()): | |
try: os.remove(input_video_filepath) | |
except: pass | |
return output_video_path | |
# --- Gradio UI Definition --- | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 900px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)") | |
gr.Markdown("Generates a short video based on text prompt, image, or existing video. Models are moved to GPU during generation and back to CPU afterwards to save VRAM.") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
with gr.Tab("image-to-video") as image_tab: | |
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None) | |
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam"]) | |
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3) | |
i2v_button = gr.Button("Generate Image-to-Video", variant="primary") | |
with gr.Tab("text-to-video") as text_tab: | |
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None) | |
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None) | |
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3) | |
t2v_button = gr.Button("Generate Text-to-Video", variant="primary") | |
with gr.Tab("video-to-video") as video_tab: | |
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None) | |
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) | |
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.") | |
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3) | |
v2v_button = gr.Button("Generate Video-to-Video", variant="primary") | |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.") | |
with gr.Column(): | |
output_video = gr.Video(label="Generated Video", interactive=False) | |
gr.Markdown("Note: Generation can take a few minutes depending on settings and hardware.") | |
with gr.Accordion("Advanced settings", open=False): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2) | |
with gr.Row(): | |
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1) | |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False) | |
with gr.Row(): | |
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.") | |
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7)) | |
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.") | |
with gr.Row(): | |
num_frames_input = gr.Slider(label="Number of Frames to Generate", minimum=9, maximum=MAX_NUM_FRAMES, value=25, step=8, info="Total frames in the output video. Should be N*8+1 (e.g., 9, 17, 25...).") | |
with gr.Row(): | |
height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.") | |
width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.") | |
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden, | |
height_input, width_input, gr.State("text-to-video"), | |
steps_input, num_frames_input, gr.State(0), | |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] | |
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden, | |
height_input, width_input, gr.State("image-to-video"), | |
steps_input, num_frames_input, gr.State(0), | |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] | |
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v, | |
height_input, width_input, gr.State("video-to-video"), | |
steps_input, num_frames_input, frames_to_use, | |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] | |
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video], api_name="text_to_video") | |
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video], api_name="image_to_video") | |
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video], api_name="video_to_video") | |
if __name__ == "__main__": | |
if os.path.exists(models_dir) and os.path.isdir(models_dir): | |
print(f"Model directory: {Path(models_dir).resolve()}") | |
demo.queue().launch(debug=True, share=False) |