Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
import os | |
import yaml | |
import random | |
from PIL import Image | |
import imageio # For export_to_video and reading video frames | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
# --- LTX-Video Imports (from your provided codebase) --- | |
from ltx_video.pipelines.pipeline_ltx_video import ( | |
ConditioningItem, | |
LTXVideoPipeline, | |
LTXMultiScalePipeline, | |
) | |
from ltx_video.models.autoencoders.vae_encode import vae_decode, vae_encode, un_normalize_latents, normalize_latents | |
from inference import ( | |
create_ltx_video_pipeline, | |
create_latent_upsampler, | |
load_image_to_tensor_with_resize_and_crop, # Re-using for image conditioning | |
load_media_file, # Re-using for video conditioning | |
get_device, | |
seed_everething, | |
calculate_padding, | |
) | |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler | |
# --- End LTX-Video Imports --- | |
# --- Diffusers/Original utils (keeping export_to_video for convenience if it works) --- | |
from diffusers.utils import export_to_video # Keep if it works with PIL list | |
# --- | |
# --- Global Configuration & Model Loading --- | |
DEVICE = get_device() | |
MODEL_DIR = "downloaded_models" # Directory to store downloaded models | |
Path(MODEL_DIR).mkdir(parents=True, exist_ok=True) | |
# Load YAML configuration | |
YAML_CONFIG_PATH = "configs/ltxv-13b-0.9.7-distilled.yaml" # Place this file in the same directory | |
with open(YAML_CONFIG_PATH, "r") as f: | |
PIPELINE_CONFIG_YAML = yaml.safe_load(f) | |
# Download and prepare model paths from YAML | |
LTXV_MODEL_FILENAME = PIPELINE_CONFIG_YAML["checkpoint_path"] | |
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] | |
TEXT_ENCODER_PATH = PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"] # This is usually a repo name | |
try: | |
# Main LTX-Video model | |
if not os.path.isfile(os.path.join(MODEL_DIR, LTXV_MODEL_FILENAME)): | |
print(f"Downloading {LTXV_MODEL_FILENAME}...") | |
ltxv_checkpoint_path = hf_hub_download( | |
repo_id="LTX-Colab/LTX-Video-Preview", # Assuming the distilled model is also here or adjust repo_id | |
filename=LTXV_MODEL_FILENAME, | |
local_dir=MODEL_DIR, | |
repo_type="model", | |
) | |
else: | |
ltxv_checkpoint_path = os.path.join(MODEL_DIR, LTXV_MODEL_FILENAME) | |
# Spatial Upsampler model | |
if not os.path.isfile(os.path.join(MODEL_DIR, SPATIAL_UPSCALER_FILENAME)): | |
print(f"Downloading {SPATIAL_UPSCALER_FILENAME}...") | |
spatial_upsampler_path = hf_hub_download( | |
repo_id="Lightricks/LTX-Video", | |
filename=SPATIAL_UPSCALER_FILENAME, | |
local_dir=MODEL_DIR, | |
repo_type="model", | |
) | |
else: | |
spatial_upsampler_path = os.path.join(MODEL_DIR, SPATIAL_UPSCALER_FILENAME) | |
except Exception as e: | |
print(f"Error downloading models: {e}") | |
print("Please ensure model files are correctly specified and accessible.") | |
# Depending on severity, you might want to exit or disable GPU features | |
# For now, we'll let it proceed and potentially fail later if paths are invalid. | |
ltxv_checkpoint_path = LTXV_MODEL_FILENAME # Fallback to filename if download fails | |
spatial_upsampler_path = SPATIAL_UPSCALER_FILENAME | |
print(f"Using LTX-Video checkpoint: {ltxv_checkpoint_path}") | |
print(f"Using Spatial Upsampler: {spatial_upsampler_path}") | |
print(f"Using Text Encoder: {TEXT_ENCODER_PATH}") | |
# Create LTX-Video pipeline | |
pipe = create_ltx_video_pipeline( | |
ckpt_path=ltxv_checkpoint_path, | |
precision=PIPELINE_CONFIG_YAML["precision"], | |
text_encoder_model_name_or_path=TEXT_ENCODER_PATH, | |
sampler=PIPELINE_CONFIG_YAML["sampler"], # "from_checkpoint" or specific sampler | |
device=DEVICE, | |
enhance_prompt=False, # Assuming Gradio controls this, or set based on YAML later | |
).to(torch.bfloat16) | |
# Create Latent Upsampler | |
latent_upsampler = create_latent_upsampler( | |
latent_upsampler_model_path=spatial_upsampler_path, | |
device=DEVICE | |
) | |
latent_upsampler = latent_upsampler.to(torch.bfloat16) | |
# Multi-scale pipeline (wrapper) | |
multi_scale_pipe = LTXMultiScalePipeline( | |
video_pipeline=pipe, | |
latent_upsampler=latent_upsampler | |
) | |
# --- End Global Configuration & Model Loading --- | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 # Not strictly used here, but good to keep in mind | |
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_scale_factor): | |
# print("before rounding",height, width) | |
height = height - (height % vae_scale_factor) | |
width = width - (width % vae_scale_factor) | |
# print("after rounding",height, width) | |
return height, width | |
def generate(prompt, | |
negative_prompt, | |
image_path, # Gradio gives filepath for Image component | |
video_path, # Gradio gives filepath for Video component | |
height, | |
width, | |
mode, | |
steps, # This will map to num_inference_steps for the first pass | |
num_frames, | |
frames_to_use, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
improve_texture=False, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
seed_everething(seed) | |
generator = torch.Generator(device=DEVICE).manual_seed(seed) | |
# --- Prepare conditioning items --- | |
conditioning_items_list = [] | |
input_media_for_vid2vid = None # For the specific vid2vid mode in LTX pipeline | |
# Pad target dimensions | |
# VAE scale factor is typically 8 for spatial, but LTX might have its own specific factor. | |
# CausalVideoAutoencoder has spatial_downscale_factor and temporal_downscale_factor | |
vae_spatial_scale_factor = pipe.vae.spatial_downscale_factor | |
vae_temporal_scale_factor = pipe.vae.temporal_downscale_factor | |
# Ensure target height/width are multiples of VAE spatial scale factor | |
height_padded_target = ((height - 1) // vae_spatial_scale_factor + 1) * vae_spatial_scale_factor | |
width_padded_target = ((width - 1) // vae_spatial_scale_factor + 1) * vae_spatial_scale_factor | |
# Ensure num_frames is multiple of VAE temporal scale factor + 1 (for causal VAE) | |
# (num_frames - 1) should be multiple of temporal_scale_factor for non-causal parts | |
# For CausalVAE, it's often (N * temporal_factor) + 1 frames. | |
# The inference script uses: num_frames_padded = ((num_frames - 2) // 8 + 1) * 8 + 1 | |
# Assuming 8 is the temporal scale factor here for simplicity, adjust if different | |
num_frames_padded_target = ((num_frames - 2) // vae_temporal_scale_factor + 1) * vae_temporal_scale_factor + 1 | |
padding_target = calculate_padding(height, width, height_padded_target, width_padded_target) | |
if mode == "video-to-video" and video_path: | |
# LTX pipeline's vid2vid uses `media_items` argument for the full video to transform | |
# and `conditioning_items` for specific keyframes if needed. | |
# Here, the Gradio's "video-to-video" seems to imply transforming the input video. | |
input_media_for_vid2vid = load_media_file( | |
media_path=video_path, | |
height=height, # Original height before padding for loading | |
width=width, # Original width | |
max_frames=min(num_frames_padded_target, frames_to_use if frames_to_use > 0 else num_frames_padded_target), | |
padding=padding_target, # Padding to make it compatible with VAE of target size | |
) | |
# If we also want to strongly condition on the first frame(s) of this video: | |
conditioning_media = load_media_file( | |
media_path=video_path, | |
height=height, width=width, | |
max_frames=min(frames_to_use if frames_to_use > 0 else 1, num_frames_padded_target), # Use specified frames or just the first | |
padding=padding_target, | |
just_crop=True # Crop to aspect ratio, then resize | |
) | |
conditioning_items_list.append(ConditioningItem(media_item=conditioning_media, media_frame_number=0, conditioning_strength=1.0)) | |
elif mode == "image-to-video" and image_path: | |
conditioning_media = load_image_to_tensor_with_resize_and_crop( | |
image_input=image_path, | |
target_height=height, # Original height | |
target_width=width # Original width | |
) | |
# Apply padding to the loaded tensor | |
conditioning_media = torch.nn.functional.pad(conditioning_media, padding_target) | |
conditioning_items_list.append(ConditioningItem(media_item=conditioning_media, media_frame_number=0, conditioning_strength=1.0)) | |
# else mode is "text-to-video", no explicit conditioning items unless defined elsewhere | |
# --- Get pipeline parameters from YAML --- | |
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}) | |
second_pass_config = PIPELINE_CONFIG_YAML.get("second_pass", {}) | |
downscale_factor = PIPELINE_CONFIG_YAML.get("downscale_factor", 2/3) | |
# Override steps from Gradio if provided, for the first pass | |
if steps: | |
# The YAML timesteps are specific, so overriding num_inference_steps might not be what we want | |
# If YAML has `timesteps`, `num_inference_steps` is ignored by LTXVideoPipeline. | |
# If YAML does not have `timesteps`, then `num_inference_steps` from Gradio will be used for the first pass. | |
first_pass_config["num_inference_steps"] = steps | |
# For distilled model, the second pass steps are usually very few, defined by its timesteps. | |
# We won't override second_pass_config["num_inference_steps"] from the Gradio `steps` | |
# as it's meant for the primary generation. | |
# Determine initial generation dimensions (downscaled) | |
# These are the dimensions for the *first pass* of the multi-scale pipeline | |
initial_gen_height = int(height_padded_target * downscale_factor) | |
initial_gen_width = int(width_padded_target * downscale_factor) | |
initial_gen_height, initial_gen_width = round_to_nearest_resolution_acceptable_by_vae( | |
initial_gen_height, initial_gen_width, vae_spatial_scale_factor | |
) | |
shared_pipeline_args = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"num_frames": num_frames_padded_target, # Always generate padded num_frames | |
"frame_rate": 30, # Example, or get from UI if available | |
"guidance_scale": guidance_scale, | |
"generator": generator, | |
"conditioning_items": conditioning_items_list if conditioning_items_list else None, | |
"skip_layer_strategy": SkipLayerStrategy.AttentionValues, # Default or from YAML | |
"offload_to_cpu": False, # Managed by global DEVICE | |
"is_video": True, | |
"vae_per_channel_normalize": True, # Common default | |
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "bfloat16"), | |
"enhance_prompt": False, # Controlled by Gradio app logic if needed for full LTX script | |
"image_cond_noise_scale": 0.025, # from YAML decode_noise_scale, or make it a param | |
"media_items": input_media_for_vid2vid if mode == "video-to-video" else None, | |
# "decode_timestep" and "decode_noise_scale" are part of first_pass/second_pass or direct call | |
} | |
# --- Generation --- | |
if improve_texture: | |
print("Using LTXMultiScalePipeline for generation...") | |
# Ensure first_pass_config and second_pass_config have necessary overrides | |
# The 'steps' from Gradio applies to the first pass's num_inference_steps if timesteps not set | |
if "timesteps" not in first_pass_config: | |
first_pass_config["num_inference_steps"] = steps | |
first_pass_config.setdefault("decode_timestep", PIPELINE_CONFIG_YAML.get("decode_timestep", 0.05)) | |
first_pass_config.setdefault("decode_noise_scale", PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.025)) | |
second_pass_config.setdefault("decode_timestep", PIPELINE_CONFIG_YAML.get("decode_timestep", 0.05)) | |
second_pass_config.setdefault("decode_noise_scale", PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.025)) | |
# The multi_scale_pipe's __call__ expects width and height for the *initial* (downscaled) generation | |
result_frames_tensor = multi_scale_pipe( | |
**shared_pipeline_args, | |
width=initial_gen_width, | |
height=initial_gen_height, | |
downscale_factor=downscale_factor, # This might be used internally by multi_scale_pipe | |
first_pass=first_pass_config, | |
second_pass=second_pass_config, | |
output_type="pt" # Get tensor for further processing | |
).images | |
# LTXMultiScalePipeline should return images at 2x the initial_gen_width/height | |
# So, result_frames_tensor is at initial_gen_width*2, initial_gen_height*2 | |
else: | |
print("Using LTXVideoPipeline (first pass) + Manual Upsample + Decode...") | |
# 1. First pass generation at downscaled resolution | |
if "timesteps" not in first_pass_config: | |
first_pass_config["num_inference_steps"] = steps | |
first_pass_args = { | |
**shared_pipeline_args, | |
**first_pass_config, | |
"width": initial_gen_width, | |
"height": initial_gen_height, | |
"output_type": "latent" | |
} | |
latents = pipe(**first_pass_args).images # .images here is actually latents | |
print("First pass done!") | |
# 2. Upsample latents manually | |
# Need to handle normalization around latent upsampler if it expects unnormalized latents | |
latents_unnorm = un_normalize_latents(latents, pipe.vae, vae_per_channel_normalize=True) | |
upsampled_latents_unnorm = latent_upsampler(latents_unnorm) | |
upsampled_latents = normalize_latents(upsampled_latents_unnorm, pipe.vae, vae_per_channel_normalize=True) | |
# 3. Decode upsampled latents | |
# The upsampler typically doubles the spatial dimensions | |
upscaled_height_for_decode = initial_gen_height * 2 | |
upscaled_width_for_decode = initial_gen_width * 2 | |
# Prepare target_shape for VAE decoder | |
# batch_size, channels, num_frames, height, width | |
# Latents are (B, C, F_latent, H_latent, W_latent) | |
# Target shape for vae.decode is pixel space | |
# num_video_frames_final = upsampled_latents.shape[2] * pipe.vae.temporal_downscale_factor | |
# if causal, it might be (F_latent - 1) * factor + 1 | |
num_video_frames_final = (upsampled_latents.shape[2] -1) * pipe.vae.temporal_downscale_factor + 1 | |
decode_kwargs = { | |
"target_shape": ( | |
upsampled_latents.shape[0], # batch | |
3, # out channels | |
num_video_frames_final, | |
upscaled_height_for_decode, | |
upscaled_width_for_decode | |
) | |
} | |
if pipe.vae.decoder.timestep_conditioning: | |
decode_kwargs["timestep"] = torch.tensor([PIPELINE_CONFIG_YAML.get("decode_timestep", 0.05)] * upsampled_latents.shape[0]).to(DEVICE) | |
# Add noise for decode if specified, similar to LTXVideoPipeline's call | |
noise = torch.randn_like(upsampled_latents) | |
decode_noise_val = PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.025) | |
upsampled_latents = upsampled_latents * (1 - decode_noise_val) + noise * decode_noise_val | |
print("before vae decoding") | |
result_frames_tensor = pipe.vae.decode(upsampled_latents, **decode_kwargs).sample | |
print("after vae decoding?") | |
# result_frames_tensor shape: (B, C, F_video, H_video, W_video) | |
# --- Post-processing: Cropping and Converting to PIL --- | |
# Crop to original num_frames (before padding) | |
result_frames_tensor = result_frames_tensor[:, :, :num_frames, :, :] | |
# Unpad to target height and width | |
_, _, _, current_h, current_w = result_frames_tensor.shape | |
# Calculate crop needed if current dimensions are larger than padded_target | |
# This happens if multi_scale_pipe output is larger than height_padded_target | |
crop_y_start = (current_h - height_padded_target) // 2 | |
crop_x_start = (current_w - width_padded_target) // 2 | |
result_frames_tensor = result_frames_tensor[ | |
:, :, :, | |
crop_y_start : crop_y_start + height_padded_target, | |
crop_x_start : crop_x_start + width_padded_target | |
] | |
# Now remove the padding added for VAE compatibility | |
pad_left, pad_right, pad_top, pad_bottom = padding_target | |
unpad_bottom = -pad_bottom if pad_bottom > 0 else result_frames_tensor.shape[3] | |
unpad_right = -pad_right if pad_right > 0 else result_frames_tensor.shape[4] | |
result_frames_tensor = result_frames_tensor[ | |
:, :, :, | |
pad_top : unpad_bottom, | |
pad_left : unpad_right | |
] | |
# Convert tensor to list of PIL Images | |
video_pil_list = [] | |
# result_frames_tensor shape: (B, C, F, H, W) | |
# We expect B=1 from typical generation | |
video_single_batch = result_frames_tensor[0] # Shape: (C, F, H, W) | |
video_single_batch = (video_single_batch / 2 + 0.5).clamp(0, 1) # Normalize to [0,1] | |
video_single_batch = video_single_batch.permute(1, 2, 3, 0).cpu().numpy() # F, H, W, C | |
for frame_idx in range(video_single_batch.shape[0]): | |
frame_np = (video_single_batch[frame_idx] * 255).astype(np.uint8) | |
video_pil_list.append(Image.fromarray(frame_np)) | |
# Save video | |
output_video_path = "output.mp4" # Gradio handles temp files | |
export_to_video(video_pil_list, output_video_path, fps=24) # Assuming fps from original script | |
return output_video_path | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 900px; | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo: | |
gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
with gr.Tab("text-to-video") as text_tab: | |
image_n = gr.Image(label="", visible=False, value=None) # Ensure None for path | |
video_n = gr.Video(label="", visible=False, value=None) # Ensure None for path | |
t2v_prompt = gr.Textbox(label="prompt", value="A majestic dragon flying over a medieval castle") | |
t2v_button = gr.Button("Generate Text-to-Video") | |
with gr.Tab("image-to-video") as image_tab: | |
video_i = gr.Video(label="", visible=False, value=None) | |
image_i2v = gr.Image(label="input image", type="filepath") | |
i2v_prompt = gr.Textbox(label="prompt", value="The creature from the image starts to move") | |
i2v_button = gr.Button("Generate Image-to-Video") | |
with gr.Tab("video-to-video") as video_tab: | |
image_v = gr.Image(label="", visible=False, value=None) | |
video_v2v = gr.Video(label="input video") | |
frames_to_use = gr.Number(label="num frames to use",info="first # of frames to use from the input video for conditioning/transformation", value=9) | |
v2v_prompt = gr.Textbox(label="prompt", value="Change the style to cinematic anime") | |
v2v_button = gr.Button("Generate Video-to-Video") | |
improve_texture = gr.Checkbox(label="improve texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower.") | |
with gr.Column(): | |
output = gr.Video(interactive=False) | |
with gr.Accordion("Advanced settings", open=False): | |
negative_prompt_input = gr.Textbox(label="negative prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted") | |
with gr.Row(): | |
seed_input = gr.Number(label="seed", value=42, precision=0) | |
randomize_seed_input = gr.Checkbox(label="randomize seed", value=False) | |
with gr.Row(): | |
guidance_scale_input = gr.Slider(label="guidance scale", minimum=0, maximum=10, value=1.0, step=0.1, info="For distilled models, CFG is often 1.0 (disabled) or very low.") # Distilled model might not need high CFG | |
steps_input = gr.Slider(label="Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*8).__len__(), step=1, info="Number of inference steps. If YAML defines timesteps, this is ignored for that pass.") # Default to length of first_pass timesteps | |
num_frames_input = gr.Slider(label="# frames", minimum=9, maximum=121, value=25, step=8, info="Should be N*8+1, e.g., 9, 17, 25...") # Adjusted for LTX structure | |
with gr.Row(): | |
height_input = gr.Slider(label="height", value=512, step=8, minimum=256, maximum=MAX_IMAGE_SIZE) # Step by VAE factor | |
width_input = gr.Slider(label="width", value=704, step=8, minimum=256, maximum=MAX_IMAGE_SIZE) # Step by VAE factor | |
t2v_button.click(fn=generate, | |
inputs=[t2v_prompt, | |
negative_prompt_input, | |
image_n, # Pass None for image | |
video_n, # Pass None for video | |
height_input, | |
width_input, | |
gr.State("text-to-video"), | |
steps_input, | |
num_frames_input, | |
gr.State(0), # frames_to_use not relevant for t2v | |
seed_input, | |
randomize_seed_input, guidance_scale_input, improve_texture], | |
outputs=[output]) | |
i2v_button.click(fn=generate, | |
inputs=[i2v_prompt, | |
negative_prompt_input, | |
image_i2v, | |
video_i, # Pass None for video | |
height_input, | |
width_input, | |
gr.State("image-to-video"), | |
steps_input, | |
num_frames_input, | |
gr.State(0), # frames_to_use not relevant for i2v initial frame | |
seed_input, | |
randomize_seed_input, guidance_scale_input, improve_texture], | |
outputs=[output]) | |
v2v_button.click(fn=generate, | |
inputs=[v2v_prompt, | |
negative_prompt_input, | |
image_v, # Pass None for image | |
video_v2v, | |
height_input, | |
width_input, | |
gr.State("video-to-video"), | |
steps_input, | |
num_frames_input, | |
frames_to_use, | |
seed_input, | |
randomize_seed_input, guidance_scale_input, improve_texture], | |
outputs=[output]) | |
demo.launch() |