Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -40,15 +40,7 @@ def generate(prompt,
|
|
40 |
|
41 |
if image is not None or t2v:
|
42 |
condition1 = LTXVideoCondition(video=image, frame_index=0)
|
43 |
-
|
44 |
-
condition1 = None
|
45 |
-
|
46 |
-
# Part 1. Generate video at smaller resolution
|
47 |
-
# Text-only conditioning is also supported without the need to pass `conditions`
|
48 |
-
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
49 |
-
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
50 |
-
|
51 |
-
latents = pipe(
|
52 |
conditions=condition1,
|
53 |
prompt=prompt,
|
54 |
negative_prompt=negative_prompt,
|
@@ -61,6 +53,38 @@ def generate(prompt,
|
|
61 |
generator=torch.Generator().manual_seed(seed),
|
62 |
#output_type="latent",
|
63 |
).frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
|
66 |
# The available latent upsampler upscales the height/width by 2x
|
|
|
40 |
|
41 |
if image is not None or t2v:
|
42 |
condition1 = LTXVideoCondition(video=image, frame_index=0)
|
43 |
+
latents = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
conditions=condition1,
|
45 |
prompt=prompt,
|
46 |
negative_prompt=negative_prompt,
|
|
|
53 |
generator=torch.Generator().manual_seed(seed),
|
54 |
#output_type="latent",
|
55 |
).frames
|
56 |
+
else:
|
57 |
+
latents = pipe(
|
58 |
+
prompt=prompt,
|
59 |
+
negative_prompt=negative_prompt,
|
60 |
+
# width=downscaled_width,
|
61 |
+
# height=downscaled_height,
|
62 |
+
num_frames=num_frames,
|
63 |
+
num_inference_steps=steps,
|
64 |
+
decode_timestep = 0.05,
|
65 |
+
decode_noise_scale = 0.025,
|
66 |
+
generator=torch.Generator().manual_seed(seed),
|
67 |
+
#output_type="latent",
|
68 |
+
).frames
|
69 |
+
|
70 |
+
# Part 1. Generate video at smaller resolution
|
71 |
+
# Text-only conditioning is also supported without the need to pass `conditions`
|
72 |
+
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
73 |
+
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
74 |
+
|
75 |
+
# latents = pipe(
|
76 |
+
# conditions=condition1,
|
77 |
+
# prompt=prompt,
|
78 |
+
# negative_prompt=negative_prompt,
|
79 |
+
# # width=downscaled_width,
|
80 |
+
# # height=downscaled_height,
|
81 |
+
# num_frames=num_frames,
|
82 |
+
# num_inference_steps=steps,
|
83 |
+
# decode_timestep = 0.05,
|
84 |
+
# decode_noise_scale = 0.025,
|
85 |
+
# generator=torch.Generator().manual_seed(seed),
|
86 |
+
# #output_type="latent",
|
87 |
+
# ).frames
|
88 |
|
89 |
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
|
90 |
# The available latent upsampler upscales the height/width by 2x
|