Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -62,22 +62,17 @@ DISTILLED_MODEL_REPO = "LTX-Colab/LTX-Video-Preview"
|
|
62 |
DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors"
|
63 |
|
64 |
UPSCALER_REPO = "Lightricks/LTX-Video"
|
65 |
-
# SPATIAL_UPSCALER_FILENAME will be taken from PIPELINE_CONFIG_YAML after it's loaded
|
66 |
|
67 |
-
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
68 |
-
MAX_NUM_FRAMES = 257
|
69 |
|
70 |
# --- Global variables for loaded models ---
|
71 |
pipeline_instance = None
|
72 |
latent_upsampler_instance = None
|
73 |
-
|
74 |
-
models_dir = "downloaded_models_gradio" # Use a distinct name
|
75 |
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
76 |
|
77 |
-
|
78 |
-
print(f"Using device: {current_device}")
|
79 |
-
print("Downloading models...")
|
80 |
-
|
81 |
distilled_model_actual_path = hf_hub_download(
|
82 |
repo_id=DISTILLED_MODEL_REPO,
|
83 |
filename=DISTILLED_MODEL_FILENAME,
|
@@ -85,7 +80,7 @@ distilled_model_actual_path = hf_hub_download(
|
|
85 |
local_dir_use_symlinks=False
|
86 |
)
|
87 |
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
|
88 |
-
print(f"Distilled model
|
89 |
|
90 |
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
|
91 |
spatial_upscaler_actual_path = hf_hub_download(
|
@@ -95,29 +90,28 @@ spatial_upscaler_actual_path = hf_hub_download(
|
|
95 |
local_dir_use_symlinks=False
|
96 |
)
|
97 |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
|
98 |
-
print(f"Spatial upscaler model
|
99 |
|
100 |
-
|
101 |
-
print("Creating LTX Video pipeline...")
|
102 |
pipeline_instance = create_ltx_video_pipeline(
|
103 |
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
104 |
precision=PIPELINE_CONFIG_YAML["precision"],
|
105 |
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
106 |
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
107 |
-
device=
|
108 |
-
enhance_prompt=False,
|
109 |
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
|
110 |
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
|
111 |
)
|
112 |
-
print("LTX Video pipeline created.")
|
113 |
|
114 |
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
115 |
-
print("Creating latent upsampler...")
|
116 |
latent_upsampler_instance = create_latent_upsampler(
|
117 |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
|
118 |
-
device=
|
119 |
)
|
120 |
-
print("Latent upsampler created.")
|
121 |
|
122 |
|
123 |
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
@@ -125,7 +119,10 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
125 |
ui_steps, num_frames_ui,
|
126 |
ui_frames_to_use,
|
127 |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
128 |
-
progress=gr.Progress(
|
|
|
|
|
|
|
129 |
|
130 |
if randomize_seed:
|
131 |
seed_ui = random.randint(0, 2**32 - 1)
|
@@ -135,7 +132,6 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
135 |
actual_width = int(width_ui)
|
136 |
actual_num_frames = int(num_frames_ui)
|
137 |
|
138 |
-
# Padded dimensions for pipeline
|
139 |
height_padded = ((actual_height - 1) // 32 + 1) * 32
|
140 |
width_padded = ((actual_width - 1) // 32 + 1) * 32
|
141 |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
|
@@ -145,23 +141,23 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
145 |
call_kwargs = {
|
146 |
"prompt": prompt,
|
147 |
"negative_prompt": negative_prompt,
|
148 |
-
"height": height_padded,
|
149 |
-
"width": width_padded,
|
150 |
-
"num_frames": num_frames_padded,
|
151 |
"frame_rate": 30,
|
152 |
-
"generator": torch.Generator(device=
|
153 |
-
"output_type": "pt",
|
154 |
"conditioning_items": None,
|
155 |
"media_items": None,
|
156 |
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
|
157 |
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
|
158 |
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
|
159 |
-
"image_cond_noise_scale": 0.15,
|
160 |
-
"is_video": True,
|
161 |
-
"vae_per_channel_normalize": True,
|
162 |
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
|
163 |
-
"offload_to_cpu": False,
|
164 |
-
"enhance_prompt": False,
|
165 |
}
|
166 |
|
167 |
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
|
@@ -178,17 +174,14 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
178 |
|
179 |
if mode == "image-to-video" and input_image_filepath:
|
180 |
try:
|
181 |
-
# Ensure the input image is loaded with original H/W for correct aspect ratio handling by the function
|
182 |
media_tensor = load_image_to_tensor_with_resize_and_crop(
|
183 |
input_image_filepath, actual_height, actual_width
|
184 |
)
|
185 |
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
|
186 |
-
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(
|
187 |
except Exception as e:
|
188 |
print(f"Error loading image {input_image_filepath}: {e}")
|
189 |
raise gr.Error(f"Could not load image: {e}")
|
190 |
-
|
191 |
-
|
192 |
elif mode == "video-to-video" and input_video_filepath:
|
193 |
try:
|
194 |
call_kwargs["media_items"] = load_media_file(
|
@@ -197,73 +190,84 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
197 |
width=actual_width,
|
198 |
max_frames=int(ui_frames_to_use),
|
199 |
padding=padding_values
|
200 |
-
).to(
|
201 |
except Exception as e:
|
202 |
print(f"Error loading video {input_video_filepath}: {e}")
|
203 |
raise gr.Error(f"Could not load video: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
first_pass_args["num_inference_steps"] = int(ui_steps)
|
217 |
-
|
218 |
-
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
|
219 |
-
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
220 |
-
# num_inference_steps for second pass is typically determined by its YAML timesteps
|
221 |
-
|
222 |
-
multi_scale_call_kwargs = call_kwargs.copy()
|
223 |
-
multi_scale_call_kwargs.update({
|
224 |
-
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
|
225 |
-
"first_pass": first_pass_args,
|
226 |
-
"second_pass": second_pass_args,
|
227 |
-
})
|
228 |
-
|
229 |
-
print(f"Calling multi-scale pipeline with effective height={actual_height}, width={actual_width}")
|
230 |
-
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
|
231 |
-
else:
|
232 |
-
# Single pass call (using base pipeline)
|
233 |
-
single_pass_call_kwargs = call_kwargs.copy()
|
234 |
-
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
|
235 |
-
|
236 |
-
# For single pass, if YAML doesn't have top-level timesteps, use ui_steps
|
237 |
-
# The current YAML is multi-scale focused, so it lacks top-level step control.
|
238 |
-
# We'll assume for a base call, num_inference_steps is directly taken from UI.
|
239 |
-
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
|
240 |
-
# Remove pass-specific args if they accidentally slipped in
|
241 |
-
single_pass_call_kwargs.pop("first_pass", None)
|
242 |
-
single_pass_call_kwargs.pop("second_pass", None)
|
243 |
-
single_pass_call_kwargs.pop("downscale_factor", None)
|
244 |
-
|
245 |
-
print(f"Calling base pipeline with height={height_padded}, width={width_padded}")
|
246 |
-
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
|
247 |
|
248 |
-
# Crop to original requested dimensions (num_frames, height, width)
|
249 |
-
# Padding: (pad_left, pad_right, pad_top, pad_bottom)
|
250 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
251 |
-
|
252 |
-
# Calculate slice indices, ensuring they don't go negative if padding was zero
|
253 |
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
254 |
slice_w_end = -pad_right if pad_right > 0 else None
|
255 |
-
|
256 |
result_images_tensor = result_images_tensor[
|
257 |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
|
258 |
]
|
259 |
|
260 |
-
#
|
261 |
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
262 |
-
|
|
|
|
|
263 |
video_np = (video_np * 255).astype(np.uint8)
|
264 |
|
265 |
temp_dir = tempfile.mkdtemp()
|
266 |
-
timestamp = random.randint(10000,99999)
|
267 |
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
268 |
|
269 |
try:
|
@@ -272,31 +276,39 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
272 |
progress(frame_idx / video_np.shape[0], desc="Saving video")
|
273 |
video_writer.append_data(video_np[frame_idx])
|
274 |
except Exception as e:
|
275 |
-
print(f"Error saving video: {e}")
|
276 |
-
# Fallback to saving frame by frame if container issue
|
277 |
try:
|
278 |
-
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8
|
279 |
for frame_idx in range(video_np.shape[0]):
|
280 |
-
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback)")
|
281 |
video_writer.append_data(video_np[frame_idx])
|
282 |
except Exception as e2:
|
283 |
print(f"Fallback video saving error: {e2}")
|
284 |
raise gr.Error(f"Failed to save video: {e2}")
|
285 |
|
286 |
-
|
287 |
-
# Clean up temporary image/video files if they were created by Gradio
|
288 |
if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper):
|
289 |
-
input_image_filepath.
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper):
|
293 |
-
input_video_filepath.close()
|
294 |
if os.path.exists(input_video_filepath.name):
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
return output_video_path
|
298 |
|
299 |
-
# --- Gradio UI Definition
|
300 |
css="""
|
301 |
#col-container {
|
302 |
margin: 0 auto;
|
@@ -304,14 +316,13 @@ css="""
|
|
304 |
}
|
305 |
"""
|
306 |
|
307 |
-
with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo:
|
308 |
gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)")
|
309 |
-
gr.Markdown("Generates a short video based on text prompt, image, or existing video.")
|
310 |
with gr.Row():
|
311 |
with gr.Column():
|
312 |
with gr.Group():
|
313 |
with gr.Tab("text-to-video") as text_tab:
|
314 |
-
# Hidden inputs for consistent generate() signature
|
315 |
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
|
316 |
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
|
317 |
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
|
@@ -340,10 +351,8 @@ with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo: # Changed theme for va
|
|
340 |
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
|
341 |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
|
342 |
with gr.Row():
|
343 |
-
# For distilled models, CFG is often 1.0 (disabled) or very low.
|
344 |
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
|
345 |
-
|
346 |
-
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7)) # Fallback to 7 if not defined
|
347 |
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
|
348 |
with gr.Row():
|
349 |
num_frames_input = gr.Slider(label="Number of Frames to Generate", minimum=9, maximum=MAX_NUM_FRAMES, value=25, step=8, info="Total frames in the output video. Should be N*8+1 (e.g., 9, 17, 25...).")
|
@@ -351,19 +360,14 @@ with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo: # Changed theme for va
|
|
351 |
height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
352 |
width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
353 |
|
354 |
-
# Define click actions
|
355 |
-
# Note: gr.State passes the current value of the component without creating a UI element for it.
|
356 |
-
# We use hidden Textbox inputs for image_n, video_n etc. and pass their `value` (which is None)
|
357 |
-
# to ensure the `generate` function always receives these arguments.
|
358 |
-
|
359 |
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
|
360 |
height_input, width_input, gr.State("text-to-video"),
|
361 |
-
steps_input, num_frames_input, gr.State(0),
|
362 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
363 |
|
364 |
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
|
365 |
height_input, width_input, gr.State("image-to-video"),
|
366 |
-
steps_input, num_frames_input, gr.State(0),
|
367 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
368 |
|
369 |
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
|
@@ -371,15 +375,12 @@ with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo: # Changed theme for va
|
|
371 |
steps_input, num_frames_input, frames_to_use,
|
372 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
373 |
|
374 |
-
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video])
|
375 |
-
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video])
|
376 |
-
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video])
|
377 |
|
378 |
if __name__ == "__main__":
|
379 |
-
# Clean up old model directory if it exists from previous runs
|
380 |
if os.path.exists(models_dir) and os.path.isdir(models_dir):
|
381 |
-
print(f"
|
382 |
-
# shutil.rmtree(models_dir) # Optional: uncomment to force re-download on every run
|
383 |
-
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
384 |
|
385 |
demo.queue().launch(debug=True, share=False)
|
|
|
62 |
DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors"
|
63 |
|
64 |
UPSCALER_REPO = "Lightricks/LTX-Video"
|
|
|
65 |
|
66 |
+
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
67 |
+
MAX_NUM_FRAMES = 257
|
68 |
|
69 |
# --- Global variables for loaded models ---
|
70 |
pipeline_instance = None
|
71 |
latent_upsampler_instance = None
|
72 |
+
models_dir = "downloaded_models_gradio_cpu_init"
|
|
|
73 |
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
74 |
|
75 |
+
print("Downloading models (if not present)...")
|
|
|
|
|
|
|
76 |
distilled_model_actual_path = hf_hub_download(
|
77 |
repo_id=DISTILLED_MODEL_REPO,
|
78 |
filename=DISTILLED_MODEL_FILENAME,
|
|
|
80 |
local_dir_use_symlinks=False
|
81 |
)
|
82 |
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
|
83 |
+
print(f"Distilled model path: {distilled_model_actual_path}")
|
84 |
|
85 |
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
|
86 |
spatial_upscaler_actual_path = hf_hub_download(
|
|
|
90 |
local_dir_use_symlinks=False
|
91 |
)
|
92 |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
|
93 |
+
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
|
94 |
|
95 |
+
print("Creating LTX Video pipeline on CPU...")
|
|
|
96 |
pipeline_instance = create_ltx_video_pipeline(
|
97 |
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
98 |
precision=PIPELINE_CONFIG_YAML["precision"],
|
99 |
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
100 |
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
101 |
+
device="cpu",
|
102 |
+
enhance_prompt=False,
|
103 |
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
|
104 |
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
|
105 |
)
|
106 |
+
print("LTX Video pipeline created on CPU.")
|
107 |
|
108 |
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
109 |
+
print("Creating latent upsampler on CPU...")
|
110 |
latent_upsampler_instance = create_latent_upsampler(
|
111 |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
|
112 |
+
device="cpu"
|
113 |
)
|
114 |
+
print("Latent upsampler created on CPU.")
|
115 |
|
116 |
|
117 |
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
|
|
119 |
ui_steps, num_frames_ui,
|
120 |
ui_frames_to_use,
|
121 |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
122 |
+
progress=gr.Progress(track_ τότε=True)):
|
123 |
+
|
124 |
+
target_inference_device = get_device()
|
125 |
+
print(f"Target inference device: {target_inference_device}")
|
126 |
|
127 |
if randomize_seed:
|
128 |
seed_ui = random.randint(0, 2**32 - 1)
|
|
|
132 |
actual_width = int(width_ui)
|
133 |
actual_num_frames = int(num_frames_ui)
|
134 |
|
|
|
135 |
height_padded = ((actual_height - 1) // 32 + 1) * 32
|
136 |
width_padded = ((actual_width - 1) // 32 + 1) * 32
|
137 |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
|
|
|
141 |
call_kwargs = {
|
142 |
"prompt": prompt,
|
143 |
"negative_prompt": negative_prompt,
|
144 |
+
"height": height_padded,
|
145 |
+
"width": width_padded,
|
146 |
+
"num_frames": num_frames_padded,
|
147 |
"frame_rate": 30,
|
148 |
+
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
|
149 |
+
"output_type": "pt", # Crucial: pipeline will output [0,1] range tensors
|
150 |
"conditioning_items": None,
|
151 |
"media_items": None,
|
152 |
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
|
153 |
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
|
154 |
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
|
155 |
+
"image_cond_noise_scale": 0.15,
|
156 |
+
"is_video": True,
|
157 |
+
"vae_per_channel_normalize": True,
|
158 |
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
|
159 |
+
"offload_to_cpu": False,
|
160 |
+
"enhance_prompt": False,
|
161 |
}
|
162 |
|
163 |
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
|
|
|
174 |
|
175 |
if mode == "image-to-video" and input_image_filepath:
|
176 |
try:
|
|
|
177 |
media_tensor = load_image_to_tensor_with_resize_and_crop(
|
178 |
input_image_filepath, actual_height, actual_width
|
179 |
)
|
180 |
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
|
181 |
+
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
|
182 |
except Exception as e:
|
183 |
print(f"Error loading image {input_image_filepath}: {e}")
|
184 |
raise gr.Error(f"Could not load image: {e}")
|
|
|
|
|
185 |
elif mode == "video-to-video" and input_video_filepath:
|
186 |
try:
|
187 |
call_kwargs["media_items"] = load_media_file(
|
|
|
190 |
width=actual_width,
|
191 |
max_frames=int(ui_frames_to_use),
|
192 |
padding=padding_values
|
193 |
+
).to(target_inference_device)
|
194 |
except Exception as e:
|
195 |
print(f"Error loading video {input_video_filepath}: {e}")
|
196 |
raise gr.Error(f"Could not load video: {e}")
|
197 |
+
|
198 |
+
print(f"Moving models to {target_inference_device} for inference...")
|
199 |
+
pipeline_instance.to(target_inference_device)
|
200 |
+
active_latent_upsampler = None
|
201 |
+
if improve_texture_flag and latent_upsampler_instance:
|
202 |
+
latent_upsampler_instance.to(target_inference_device)
|
203 |
+
active_latent_upsampler = latent_upsampler_instance
|
204 |
+
print("Models moved.")
|
205 |
+
|
206 |
+
result_images_tensor = None
|
207 |
+
try:
|
208 |
+
if improve_texture_flag:
|
209 |
+
if not active_latent_upsampler:
|
210 |
+
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
|
211 |
+
|
212 |
+
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
|
213 |
+
|
214 |
+
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
215 |
+
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
216 |
+
if "timesteps" not in first_pass_args:
|
217 |
+
first_pass_args["num_inference_steps"] = int(ui_steps)
|
218 |
+
|
219 |
+
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
|
220 |
+
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
221 |
+
|
222 |
+
multi_scale_call_kwargs = call_kwargs.copy()
|
223 |
+
multi_scale_call_kwargs.update({
|
224 |
+
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
|
225 |
+
"first_pass": first_pass_args,
|
226 |
+
"second_pass": second_pass_args,
|
227 |
+
})
|
228 |
+
|
229 |
+
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}) on {target_inference_device}")
|
230 |
+
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
|
231 |
+
else:
|
232 |
+
single_pass_call_kwargs = call_kwargs.copy()
|
233 |
+
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
|
234 |
+
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
|
235 |
+
single_pass_call_kwargs.pop("first_pass", None)
|
236 |
+
single_pass_call_kwargs.pop("second_pass", None)
|
237 |
+
single_pass_call_kwargs.pop("downscale_factor", None)
|
238 |
+
|
239 |
+
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}) on {target_inference_device}")
|
240 |
+
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
|
241 |
|
242 |
+
finally:
|
243 |
+
print(f"Moving models back to CPU...")
|
244 |
+
pipeline_instance.to("cpu")
|
245 |
+
if active_latent_upsampler:
|
246 |
+
active_latent_upsampler.to("cpu")
|
247 |
|
248 |
+
if target_inference_device == "cuda":
|
249 |
+
torch.cuda.empty_cache()
|
250 |
+
print("Models moved back to CPU and cache cleared (if CUDA).")
|
251 |
+
|
252 |
+
if result_images_tensor is None:
|
253 |
+
raise gr.Error("Generation failed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
|
|
|
|
255 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
|
|
|
|
256 |
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
257 |
slice_w_end = -pad_right if pad_right > 0 else None
|
|
|
258 |
result_images_tensor = result_images_tensor[
|
259 |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
|
260 |
]
|
261 |
|
262 |
+
# The pipeline with output_type="pt" should return tensors in the [0, 1] range.
|
263 |
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
264 |
+
|
265 |
+
# Clip to ensure values are indeed in [0, 1] before scaling to uint8
|
266 |
+
video_np = np.clip(video_np, 0, 1)
|
267 |
video_np = (video_np * 255).astype(np.uint8)
|
268 |
|
269 |
temp_dir = tempfile.mkdtemp()
|
270 |
+
timestamp = random.randint(10000,99999)
|
271 |
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
272 |
|
273 |
try:
|
|
|
276 |
progress(frame_idx / video_np.shape[0], desc="Saving video")
|
277 |
video_writer.append_data(video_np[frame_idx])
|
278 |
except Exception as e:
|
279 |
+
print(f"Error saving video with macro_block_size=1: {e}")
|
|
|
280 |
try:
|
281 |
+
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
|
282 |
for frame_idx in range(video_np.shape[0]):
|
283 |
+
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
|
284 |
video_writer.append_data(video_np[frame_idx])
|
285 |
except Exception as e2:
|
286 |
print(f"Fallback video saving error: {e2}")
|
287 |
raise gr.Error(f"Failed to save video: {e2}")
|
288 |
|
|
|
|
|
289 |
if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper):
|
290 |
+
if os.path.exists(input_image_filepath.name): # Check if it's already closed by Gradio
|
291 |
+
try:
|
292 |
+
input_image_filepath.close()
|
293 |
+
os.remove(input_image_filepath.name)
|
294 |
+
except: pass # May already be closed/removed
|
295 |
+
elif input_image_filepath and os.path.exists(input_image_filepath) and input_image_filepath.startswith(tempfile.gettempdir()):
|
296 |
+
try: os.remove(input_image_filepath) # If Gradio passed a path to a temp file
|
297 |
+
except: pass
|
298 |
+
|
299 |
if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper):
|
|
|
300 |
if os.path.exists(input_video_filepath.name):
|
301 |
+
try:
|
302 |
+
input_video_filepath.close()
|
303 |
+
os.remove(input_video_filepath.name)
|
304 |
+
except: pass
|
305 |
+
elif input_video_filepath and os.path.exists(input_video_filepath) and input_video_filepath.startswith(tempfile.gettempdir()):
|
306 |
+
try: os.remove(input_video_filepath)
|
307 |
+
except: pass
|
308 |
|
309 |
return output_video_path
|
310 |
|
311 |
+
# --- Gradio UI Definition ---
|
312 |
css="""
|
313 |
#col-container {
|
314 |
margin: 0 auto;
|
|
|
316 |
}
|
317 |
"""
|
318 |
|
319 |
+
with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo:
|
320 |
gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)")
|
321 |
+
gr.Markdown("Generates a short video based on text prompt, image, or existing video. Models are moved to GPU during generation and back to CPU afterwards to save VRAM.")
|
322 |
with gr.Row():
|
323 |
with gr.Column():
|
324 |
with gr.Group():
|
325 |
with gr.Tab("text-to-video") as text_tab:
|
|
|
326 |
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
|
327 |
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
|
328 |
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
|
|
|
351 |
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
|
352 |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
|
353 |
with gr.Row():
|
|
|
354 |
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
|
355 |
+
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7))
|
|
|
356 |
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
|
357 |
with gr.Row():
|
358 |
num_frames_input = gr.Slider(label="Number of Frames to Generate", minimum=9, maximum=MAX_NUM_FRAMES, value=25, step=8, info="Total frames in the output video. Should be N*8+1 (e.g., 9, 17, 25...).")
|
|
|
360 |
height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
361 |
width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
362 |
|
|
|
|
|
|
|
|
|
|
|
363 |
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
|
364 |
height_input, width_input, gr.State("text-to-video"),
|
365 |
+
steps_input, num_frames_input, gr.State(0),
|
366 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
367 |
|
368 |
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
|
369 |
height_input, width_input, gr.State("image-to-video"),
|
370 |
+
steps_input, num_frames_input, gr.State(0),
|
371 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
372 |
|
373 |
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
|
|
|
375 |
steps_input, num_frames_input, frames_to_use,
|
376 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
377 |
|
378 |
+
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video], api_name="text_to_video")
|
379 |
+
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video], api_name="image_to_video")
|
380 |
+
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video], api_name="video_to_video")
|
381 |
|
382 |
if __name__ == "__main__":
|
|
|
383 |
if os.path.exists(models_dir) and os.path.isdir(models_dir):
|
384 |
+
print(f"Model directory: {Path(models_dir).resolve()}")
|
|
|
|
|
385 |
|
386 |
demo.queue().launch(debug=True, share=False)
|