linoyts HF Staff commited on
Commit
e0c3c14
·
verified ·
1 Parent(s): 34999ab

Delete pipeline_ltx_condition.py

Browse files
Files changed (1) hide show
  1. pipeline_ltx_condition.py +0 -1194
pipeline_ltx_condition.py DELETED
@@ -1,1194 +0,0 @@
1
- # Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import inspect
16
- from dataclasses import dataclass
17
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
-
19
- import PIL.Image
20
- import torch
21
- from transformers import T5EncoderModel, T5TokenizerFast
22
-
23
- from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
24
- from diffusers.image_processor import PipelineImageInput
25
- from diffusers.loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
26
- from diffusers.models.autoencoders import AutoencoderKLLTXVideo
27
- from diffusers.models.transformers import LTXVideoTransformer3DModel
28
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
29
- from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
30
- from diffusers.utils.torch_utils import randn_tensor
31
- from diffusers.video_processor import VideoProcessor
32
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline
33
- from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
34
-
35
-
36
- if is_torch_xla_available():
37
- import torch_xla.core.xla_model as xm
38
-
39
- XLA_AVAILABLE = True
40
- else:
41
- XLA_AVAILABLE = False
42
-
43
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
-
45
- EXAMPLE_DOC_STRING = """
46
- Examples:
47
- ```py
48
- >>> import torch
49
- >>> from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXConditionPipeline, LTXVideoCondition
50
- >>> from diffusers.utils import export_to_video, load_video, load_image
51
-
52
- >>> pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16)
53
- >>> pipe.to("cuda")
54
-
55
- >>> # Load input image and video
56
- >>> video = load_video(
57
- ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
58
- ... )
59
- >>> image = load_image(
60
- ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input.jpg"
61
- ... )
62
-
63
- >>> # Create conditioning objects
64
- >>> condition1 = LTXVideoCondition(
65
- ... image=image,
66
- ... frame_index=0,
67
- ... )
68
- >>> condition2 = LTXVideoCondition(
69
- ... video=video,
70
- ... frame_index=80,
71
- ... )
72
-
73
- >>> prompt = "The video depicts a long, straight highway stretching into the distance, flanked by metal guardrails. The road is divided into multiple lanes, with a few vehicles visible in the far distance. The surrounding landscape features dry, grassy fields on one side and rolling hills on the other. The sky is mostly clear with a few scattered clouds, suggesting a bright, sunny day. And then the camera switch to a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
74
- >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
75
-
76
- >>> # Generate video
77
- >>> generator = torch.Generator("cuda").manual_seed(0)
78
- >>> # Text-only conditioning is also supported without the need to pass `conditions`
79
- >>> video = pipe(
80
- ... conditions=[condition1, condition2],
81
- ... prompt=prompt,
82
- ... negative_prompt=negative_prompt,
83
- ... width=768,
84
- ... height=512,
85
- ... num_frames=161,
86
- ... num_inference_steps=40,
87
- ... generator=generator,
88
- ... ).frames[0]
89
-
90
- >>> export_to_video(video, "output.mp4", fps=24)
91
- ```
92
- """
93
-
94
-
95
- @dataclass
96
- class LTXVideoCondition:
97
- """
98
- Defines a single frame-conditioning item for LTX Video - a single frame or a sequence of frames.
99
-
100
- Attributes:
101
- image (`PIL.Image.Image`):
102
- The image to condition the video on.
103
- video (`List[PIL.Image.Image]`):
104
- The video to condition the video on.
105
- frame_index (`int`):
106
- The frame index at which the image or video will conditionally effect the video generation.
107
- strength (`float`, defaults to `1.0`):
108
- The strength of the conditioning effect. A value of `1.0` means the conditioning effect is fully applied.
109
- """
110
-
111
- image: Optional[PIL.Image.Image] = None
112
- video: Optional[List[PIL.Image.Image]] = None
113
- frame_index: int = 0
114
- strength: float = 1.0
115
-
116
-
117
- # from LTX-Video/ltx_video/schedulers/rf.py
118
- def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None):
119
- if linear_steps is None:
120
- linear_steps = num_steps // 2
121
- if num_steps < 2:
122
- return torch.tensor([1.0])
123
- linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
124
- threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
125
- quadratic_steps = num_steps - linear_steps
126
- quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
127
- linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
128
- const = quadratic_coef * (linear_steps**2)
129
- quadratic_sigma_schedule = [
130
- quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
131
- ]
132
- sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
133
- sigma_schedule = [1.0 - x for x in sigma_schedule]
134
- return torch.tensor(sigma_schedule[:-1])
135
-
136
-
137
- # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
138
- def calculate_shift(
139
- image_seq_len,
140
- base_seq_len: int = 256,
141
- max_seq_len: int = 4096,
142
- base_shift: float = 0.5,
143
- max_shift: float = 1.15,
144
- ):
145
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
146
- b = base_shift - m * base_seq_len
147
- mu = image_seq_len * m + b
148
- return mu
149
-
150
-
151
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
152
- def retrieve_timesteps(
153
- scheduler,
154
- num_inference_steps: Optional[int] = None,
155
- device: Optional[Union[str, torch.device]] = None,
156
- timesteps: Optional[List[int]] = None,
157
- sigmas: Optional[List[float]] = None,
158
- **kwargs,
159
- ):
160
- r"""
161
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
162
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
163
-
164
- Args:
165
- scheduler (`SchedulerMixin`):
166
- The scheduler to get timesteps from.
167
- num_inference_steps (`int`):
168
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
169
- must be `None`.
170
- device (`str` or `torch.device`, *optional*):
171
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
172
- timesteps (`List[int]`, *optional*):
173
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
174
- `num_inference_steps` and `sigmas` must be `None`.
175
- sigmas (`List[float]`, *optional*):
176
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
177
- `num_inference_steps` and `timesteps` must be `None`.
178
-
179
- Returns:
180
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
181
- second element is the number of inference steps.
182
- """
183
- if timesteps is not None and sigmas is not None:
184
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
185
- if timesteps is not None:
186
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
187
- if not accepts_timesteps:
188
- raise ValueError(
189
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
190
- f" timestep schedules. Please check whether you are using the correct scheduler."
191
- )
192
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
193
- timesteps = scheduler.timesteps
194
- num_inference_steps = len(timesteps)
195
- elif sigmas is not None:
196
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
197
- if not accept_sigmas:
198
- raise ValueError(
199
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
200
- f" sigmas schedules. Please check whether you are using the correct scheduler."
201
- )
202
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
203
- timesteps = scheduler.timesteps
204
- num_inference_steps = len(timesteps)
205
- else:
206
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
207
- timesteps = scheduler.timesteps
208
- return timesteps, num_inference_steps
209
-
210
-
211
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
212
- def retrieve_latents(
213
- encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
214
- ):
215
- if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
216
- return encoder_output.latent_dist.sample(generator)
217
- elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
218
- return encoder_output.latent_dist.mode()
219
- elif hasattr(encoder_output, "latents"):
220
- return encoder_output.latents
221
- else:
222
- raise AttributeError("Could not access latents of provided encoder_output")
223
-
224
-
225
- class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
226
- r"""
227
- Pipeline for text/image/video-to-video generation.
228
-
229
- Reference: https://github.com/Lightricks/LTX-Video
230
-
231
- Args:
232
- transformer ([`LTXVideoTransformer3DModel`]):
233
- Conditional Transformer architecture to denoise the encoded video latents.
234
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
235
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
236
- vae ([`AutoencoderKLLTXVideo`]):
237
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
238
- text_encoder ([`T5EncoderModel`]):
239
- [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
240
- the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
241
- tokenizer (`CLIPTokenizer`):
242
- Tokenizer of class
243
- [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
244
- tokenizer (`T5TokenizerFast`):
245
- Second Tokenizer of class
246
- [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
247
- """
248
-
249
- model_cpu_offload_seq = "text_encoder->transformer->vae"
250
- _optional_components = []
251
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
252
-
253
- def __init__(
254
- self,
255
- scheduler: FlowMatchEulerDiscreteScheduler,
256
- vae: AutoencoderKLLTXVideo,
257
- text_encoder: T5EncoderModel,
258
- tokenizer: T5TokenizerFast,
259
- transformer: LTXVideoTransformer3DModel,
260
- ):
261
- super().__init__()
262
-
263
- self.register_modules(
264
- vae=vae,
265
- text_encoder=text_encoder,
266
- tokenizer=tokenizer,
267
- transformer=transformer,
268
- scheduler=scheduler,
269
- )
270
-
271
- self.vae_spatial_compression_ratio = (
272
- self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 32
273
- )
274
- self.vae_temporal_compression_ratio = (
275
- self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 8
276
- )
277
- self.transformer_spatial_patch_size = (
278
- self.transformer.config.patch_size if getattr(self, "transformer", None) is not None else 1
279
- )
280
- self.transformer_temporal_patch_size = (
281
- self.transformer.config.patch_size_t if getattr(self, "transformer") is not None else 1
282
- )
283
-
284
- self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
285
- self.tokenizer_max_length = (
286
- self.tokenizer.model_max_length if getattr(self, "tokenizer", None) is not None else 128
287
- )
288
-
289
- self.default_height = 512
290
- self.default_width = 704
291
- self.default_frames = 121
292
-
293
- def _get_t5_prompt_embeds(
294
- self,
295
- prompt: Union[str, List[str]] = None,
296
- num_videos_per_prompt: int = 1,
297
- max_sequence_length: int = 256,
298
- device: Optional[torch.device] = None,
299
- dtype: Optional[torch.dtype] = None,
300
- ):
301
- device = device or self._execution_device
302
- dtype = dtype or self.text_encoder.dtype
303
-
304
- prompt = [prompt] if isinstance(prompt, str) else prompt
305
- batch_size = len(prompt)
306
-
307
- text_inputs = self.tokenizer(
308
- prompt,
309
- padding="max_length",
310
- max_length=max_sequence_length,
311
- truncation=True,
312
- add_special_tokens=True,
313
- return_tensors="pt",
314
- )
315
- text_input_ids = text_inputs.input_ids
316
- prompt_attention_mask = text_inputs.attention_mask
317
- prompt_attention_mask = prompt_attention_mask.bool().to(device)
318
-
319
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
320
-
321
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
322
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
323
- logger.warning(
324
- "The following part of your input was truncated because `max_sequence_length` is set to "
325
- f" {max_sequence_length} tokens: {removed_text}"
326
- )
327
-
328
- prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
329
- prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
330
-
331
- # duplicate text embeddings for each generation per prompt, using mps friendly method
332
- _, seq_len, _ = prompt_embeds.shape
333
- prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
334
- prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
335
-
336
- prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
337
- prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
338
-
339
- return prompt_embeds, prompt_attention_mask
340
-
341
- # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt
342
- def encode_prompt(
343
- self,
344
- prompt: Union[str, List[str]],
345
- negative_prompt: Optional[Union[str, List[str]]] = None,
346
- do_classifier_free_guidance: bool = True,
347
- num_videos_per_prompt: int = 1,
348
- prompt_embeds: Optional[torch.Tensor] = None,
349
- negative_prompt_embeds: Optional[torch.Tensor] = None,
350
- prompt_attention_mask: Optional[torch.Tensor] = None,
351
- negative_prompt_attention_mask: Optional[torch.Tensor] = None,
352
- max_sequence_length: int = 256,
353
- device: Optional[torch.device] = None,
354
- dtype: Optional[torch.dtype] = None,
355
- ):
356
- r"""
357
- Encodes the prompt into text encoder hidden states.
358
-
359
- Args:
360
- prompt (`str` or `List[str]`, *optional*):
361
- prompt to be encoded
362
- negative_prompt (`str` or `List[str]`, *optional*):
363
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
364
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
365
- less than `1`).
366
- do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
367
- Whether to use classifier free guidance or not.
368
- num_videos_per_prompt (`int`, *optional*, defaults to 1):
369
- Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
370
- prompt_embeds (`torch.Tensor`, *optional*):
371
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
372
- provided, text embeddings will be generated from `prompt` input argument.
373
- negative_prompt_embeds (`torch.Tensor`, *optional*):
374
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
375
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
376
- argument.
377
- device: (`torch.device`, *optional*):
378
- torch device
379
- dtype: (`torch.dtype`, *optional*):
380
- torch dtype
381
- """
382
- device = device or self._execution_device
383
-
384
- prompt = [prompt] if isinstance(prompt, str) else prompt
385
- if prompt is not None:
386
- batch_size = len(prompt)
387
- else:
388
- batch_size = prompt_embeds.shape[0]
389
-
390
- if prompt_embeds is None:
391
- prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
392
- prompt=prompt,
393
- num_videos_per_prompt=num_videos_per_prompt,
394
- max_sequence_length=max_sequence_length,
395
- device=device,
396
- dtype=dtype,
397
- )
398
-
399
- if do_classifier_free_guidance and negative_prompt_embeds is None:
400
- negative_prompt = negative_prompt or ""
401
- negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
402
-
403
- if prompt is not None and type(prompt) is not type(negative_prompt):
404
- raise TypeError(
405
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
406
- f" {type(prompt)}."
407
- )
408
- elif batch_size != len(negative_prompt):
409
- raise ValueError(
410
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
411
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
412
- " the batch size of `prompt`."
413
- )
414
-
415
- negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
416
- prompt=negative_prompt,
417
- num_videos_per_prompt=num_videos_per_prompt,
418
- max_sequence_length=max_sequence_length,
419
- device=device,
420
- dtype=dtype,
421
- )
422
-
423
- return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
424
-
425
- def check_inputs(
426
- self,
427
- prompt,
428
- conditions,
429
- image,
430
- video,
431
- frame_index,
432
- strength,
433
- height,
434
- width,
435
- callback_on_step_end_tensor_inputs=None,
436
- prompt_embeds=None,
437
- negative_prompt_embeds=None,
438
- prompt_attention_mask=None,
439
- negative_prompt_attention_mask=None,
440
- ):
441
- if height % 32 != 0 or width % 32 != 0:
442
- raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
443
-
444
- if callback_on_step_end_tensor_inputs is not None and not all(
445
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
446
- ):
447
- raise ValueError(
448
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
449
- )
450
-
451
- if prompt is not None and prompt_embeds is not None:
452
- raise ValueError(
453
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
454
- " only forward one of the two."
455
- )
456
- elif prompt is None and prompt_embeds is None:
457
- raise ValueError(
458
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
459
- )
460
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
461
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
462
-
463
- if prompt_embeds is not None and prompt_attention_mask is None:
464
- raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
465
-
466
- if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
467
- raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
468
-
469
- if prompt_embeds is not None and negative_prompt_embeds is not None:
470
- if prompt_embeds.shape != negative_prompt_embeds.shape:
471
- raise ValueError(
472
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
473
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
474
- f" {negative_prompt_embeds.shape}."
475
- )
476
- if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
477
- raise ValueError(
478
- "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
479
- f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
480
- f" {negative_prompt_attention_mask.shape}."
481
- )
482
-
483
- if conditions is not None and (image is not None or video is not None):
484
- raise ValueError("If `conditions` is provided, `image` and `video` must not be provided.")
485
-
486
- if conditions is None:
487
- if isinstance(image, list) and isinstance(frame_index, list) and len(image) != len(frame_index):
488
- raise ValueError(
489
- "If `conditions` is not provided, `image` and `frame_index` must be of the same length."
490
- )
491
- elif isinstance(image, list) and isinstance(strength, list) and len(image) != len(strength):
492
- raise ValueError("If `conditions` is not provided, `image` and `strength` must be of the same length.")
493
- elif isinstance(video, list) and isinstance(frame_index, list) and len(video) != len(frame_index):
494
- raise ValueError(
495
- "If `conditions` is not provided, `video` and `frame_index` must be of the same length."
496
- )
497
- elif isinstance(video, list) and isinstance(strength, list) and len(video) != len(strength):
498
- raise ValueError("If `conditions` is not provided, `video` and `strength` must be of the same length.")
499
-
500
- @staticmethod
501
- def _prepare_video_ids(
502
- batch_size: int,
503
- num_frames: int,
504
- height: int,
505
- width: int,
506
- patch_size: int = 1,
507
- patch_size_t: int = 1,
508
- device: torch.device = None,
509
- ) -> torch.Tensor:
510
- latent_sample_coords = torch.meshgrid(
511
- torch.arange(0, num_frames, patch_size_t, device=device),
512
- torch.arange(0, height, patch_size, device=device),
513
- torch.arange(0, width, patch_size, device=device),
514
- indexing="ij",
515
- )
516
- latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
517
- latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
518
- latent_coords = latent_coords.reshape(batch_size, -1, num_frames * height * width)
519
-
520
- return latent_coords
521
-
522
- @staticmethod
523
- def _scale_video_ids(
524
- video_ids: torch.Tensor,
525
- scale_factor: int = 32,
526
- scale_factor_t: int = 8,
527
- frame_index: int = 0,
528
- device: torch.device = None,
529
- ) -> torch.Tensor:
530
- scaled_latent_coords = (
531
- video_ids
532
- * torch.tensor([scale_factor_t, scale_factor, scale_factor], device=video_ids.device)[None, :, None]
533
- )
534
- scaled_latent_coords[:, 0] = (scaled_latent_coords[:, 0] + 1 - scale_factor_t).clamp(min=0)
535
- scaled_latent_coords[:, 0] += frame_index
536
-
537
- return scaled_latent_coords
538
-
539
- @staticmethod
540
- # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
541
- def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
542
- # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
543
- # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
544
- # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
545
- # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
546
- batch_size, num_channels, num_frames, height, width = latents.shape
547
- post_patch_num_frames = num_frames // patch_size_t
548
- post_patch_height = height // patch_size
549
- post_patch_width = width // patch_size
550
- latents = latents.reshape(
551
- batch_size,
552
- -1,
553
- post_patch_num_frames,
554
- patch_size_t,
555
- post_patch_height,
556
- patch_size,
557
- post_patch_width,
558
- patch_size,
559
- )
560
- latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
561
- return latents
562
-
563
- @staticmethod
564
- # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
565
- def _unpack_latents(
566
- latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
567
- ) -> torch.Tensor:
568
- # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
569
- # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
570
- # what happens in the `_pack_latents` method.
571
- batch_size = latents.size(0)
572
- latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
573
- latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
574
- return latents
575
-
576
- @staticmethod
577
- # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
578
- def _normalize_latents(
579
- latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
580
- ) -> torch.Tensor:
581
- # Normalize latents across the channel dimension [B, C, F, H, W]
582
- latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
583
- latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
584
- latents = (latents - latents_mean) * scaling_factor / latents_std
585
- return latents
586
-
587
- @staticmethod
588
- # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
589
- def _denormalize_latents(
590
- latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
591
- ) -> torch.Tensor:
592
- # Denormalize latents across the channel dimension [B, C, F, H, W]
593
- latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
594
- latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
595
- latents = latents * latents_std / scaling_factor + latents_mean
596
- return latents
597
-
598
- def trim_conditioning_sequence(self, start_frame: int, sequence_num_frames: int, target_num_frames: int):
599
- """
600
- Trim a conditioning sequence to the allowed number of frames.
601
-
602
- Args:
603
- start_frame (int): The target frame number of the first frame in the sequence.
604
- sequence_num_frames (int): The number of frames in the sequence.
605
- target_num_frames (int): The target number of frames in the generated video.
606
- Returns:
607
- int: updated sequence length
608
- """
609
- scale_factor = self.vae_temporal_compression_ratio
610
- num_frames = min(sequence_num_frames, target_num_frames - start_frame)
611
- # Trim down to a multiple of temporal_scale_factor frames plus 1
612
- num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
613
- return num_frames
614
-
615
- @staticmethod
616
- def add_noise_to_image_conditioning_latents(
617
- t: float,
618
- init_latents: torch.Tensor,
619
- latents: torch.Tensor,
620
- noise_scale: float,
621
- conditioning_mask: torch.Tensor,
622
- generator,
623
- eps=1e-6,
624
- ):
625
- """
626
- Add timestep-dependent noise to the hard-conditioning latents. This helps with motion continuity, especially
627
- when conditioned on a single frame.
628
- """
629
- noise = randn_tensor(
630
- latents.shape,
631
- generator=generator,
632
- device=latents.device,
633
- dtype=latents.dtype,
634
- )
635
- # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
636
- need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
637
- noised_latents = init_latents + noise_scale * noise * (t**2)
638
- latents = torch.where(need_to_noise, noised_latents, latents)
639
- return latents
640
-
641
- def prepare_latents(
642
- self,
643
- conditions: Optional[List[torch.Tensor]] = None,
644
- condition_strength: Optional[List[float]] = None,
645
- condition_frame_index: Optional[List[int]] = None,
646
- batch_size: int = 1,
647
- num_channels_latents: int = 128,
648
- height: int = 512,
649
- width: int = 704,
650
- num_frames: int = 161,
651
- num_prefix_latent_frames: int = 2,
652
- generator: Optional[torch.Generator] = None,
653
- device: Optional[torch.device] = None,
654
- dtype: Optional[torch.dtype] = None,
655
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
656
- num_latent_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
657
- latent_height = height // self.vae_spatial_compression_ratio
658
- latent_width = width // self.vae_spatial_compression_ratio
659
-
660
- shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
661
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
662
-
663
- if len(conditions) > 0:
664
- condition_latent_frames_mask = torch.zeros(
665
- (batch_size, num_latent_frames), device=device, dtype=torch.float32
666
- )
667
-
668
- extra_conditioning_latents = []
669
- extra_conditioning_video_ids = []
670
- extra_conditioning_mask = []
671
- extra_conditioning_num_latents = 0
672
- for data, strength, frame_index in zip(conditions, condition_strength, condition_frame_index):
673
- condition_latents = retrieve_latents(self.vae.encode(data), generator=generator)
674
- condition_latents = self._normalize_latents(
675
- condition_latents, self.vae.latents_mean, self.vae.latents_std
676
- ).to(device, dtype=dtype)
677
-
678
- num_data_frames = data.size(2)
679
- num_cond_frames = condition_latents.size(2)
680
-
681
- if frame_index == 0:
682
- latents[:, :, :num_cond_frames] = torch.lerp(
683
- latents[:, :, :num_cond_frames], condition_latents, strength
684
- )
685
- condition_latent_frames_mask[:, :num_cond_frames] = strength
686
-
687
- else:
688
- if num_data_frames > 1:
689
- if num_cond_frames < num_prefix_latent_frames:
690
- raise ValueError(
691
- f"Number of latent frames must be at least {num_prefix_latent_frames} but got {num_data_frames}."
692
- )
693
-
694
- if num_cond_frames > num_prefix_latent_frames:
695
- start_frame = frame_index // self.vae_temporal_compression_ratio + num_prefix_latent_frames
696
- end_frame = start_frame + num_cond_frames - num_prefix_latent_frames
697
- latents[:, :, start_frame:end_frame] = torch.lerp(
698
- latents[:, :, start_frame:end_frame],
699
- condition_latents[:, :, num_prefix_latent_frames:],
700
- strength,
701
- )
702
- condition_latent_frames_mask[:, start_frame:end_frame] = strength
703
- condition_latents = condition_latents[:, :, :num_prefix_latent_frames]
704
-
705
- noise = randn_tensor(condition_latents.shape, generator=generator, device=device, dtype=dtype)
706
- condition_latents = torch.lerp(noise, condition_latents, strength)
707
-
708
- condition_video_ids = self._prepare_video_ids(
709
- batch_size,
710
- condition_latents.size(2),
711
- latent_height,
712
- latent_width,
713
- patch_size=self.transformer_spatial_patch_size,
714
- patch_size_t=self.transformer_temporal_patch_size,
715
- device=device,
716
- )
717
- condition_video_ids = self._scale_video_ids(
718
- condition_video_ids,
719
- scale_factor=self.vae_spatial_compression_ratio,
720
- scale_factor_t=self.vae_temporal_compression_ratio,
721
- frame_index=frame_index,
722
- device=device,
723
- )
724
- condition_latents = self._pack_latents(
725
- condition_latents,
726
- self.transformer_spatial_patch_size,
727
- self.transformer_temporal_patch_size,
728
- )
729
- condition_conditioning_mask = torch.full(
730
- condition_latents.shape[:2], strength, device=device, dtype=dtype
731
- )
732
-
733
- extra_conditioning_latents.append(condition_latents)
734
- extra_conditioning_video_ids.append(condition_video_ids)
735
- extra_conditioning_mask.append(condition_conditioning_mask)
736
- extra_conditioning_num_latents += condition_latents.size(1)
737
-
738
- video_ids = self._prepare_video_ids(
739
- batch_size,
740
- num_latent_frames,
741
- latent_height,
742
- latent_width,
743
- patch_size_t=self.transformer_temporal_patch_size,
744
- patch_size=self.transformer_spatial_patch_size,
745
- device=device,
746
- )
747
- if len(conditions) > 0:
748
- conditioning_mask = condition_latent_frames_mask.gather(1, video_ids[:, 0])
749
- else:
750
- conditioning_mask, extra_conditioning_num_latents = None, 0
751
- video_ids = self._scale_video_ids(
752
- video_ids,
753
- scale_factor=self.vae_spatial_compression_ratio,
754
- scale_factor_t=self.vae_temporal_compression_ratio,
755
- frame_index=0,
756
- device=device,
757
- )
758
- latents = self._pack_latents(
759
- latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
760
- )
761
-
762
- if len(conditions) > 0 and len(extra_conditioning_latents) > 0:
763
- latents = torch.cat([*extra_conditioning_latents, latents], dim=1)
764
- video_ids = torch.cat([*extra_conditioning_video_ids, video_ids], dim=2)
765
- conditioning_mask = torch.cat([*extra_conditioning_mask, conditioning_mask], dim=1)
766
-
767
- return latents, conditioning_mask, video_ids, extra_conditioning_num_latents
768
-
769
- @property
770
- def guidance_scale(self):
771
- return self._guidance_scale
772
-
773
- @property
774
- def do_classifier_free_guidance(self):
775
- return self._guidance_scale > 1.0
776
-
777
- @property
778
- def num_timesteps(self):
779
- return self._num_timesteps
780
-
781
- @property
782
- def current_timestep(self):
783
- return self._current_timestep
784
-
785
- @property
786
- def attention_kwargs(self):
787
- return self._attention_kwargs
788
-
789
- @property
790
- def interrupt(self):
791
- return self._interrupt
792
-
793
- @torch.no_grad()
794
- @replace_example_docstring(EXAMPLE_DOC_STRING)
795
- def __call__(
796
- self,
797
- conditions: Union[LTXVideoCondition, List[LTXVideoCondition]] = None,
798
- image: Union[PipelineImageInput, List[PipelineImageInput]] = None,
799
- video: List[PipelineImageInput] = None,
800
- frame_index: Union[int, List[int]] = 0,
801
- strength: Union[float, List[float]] = 1.0,
802
- prompt: Union[str, List[str]] = None,
803
- negative_prompt: Optional[Union[str, List[str]]] = None,
804
- height: int = 512,
805
- width: int = 704,
806
- num_frames: int = 161,
807
- frame_rate: int = 25,
808
- num_inference_steps: int = 50,
809
- timesteps: List[int] = None,
810
- guidance_scale: float = 3,
811
- image_cond_noise_scale: float = 0.15,
812
- num_videos_per_prompt: Optional[int] = 1,
813
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
814
- latents: Optional[torch.Tensor] = None,
815
- prompt_embeds: Optional[torch.Tensor] = None,
816
- prompt_attention_mask: Optional[torch.Tensor] = None,
817
- negative_prompt_embeds: Optional[torch.Tensor] = None,
818
- negative_prompt_attention_mask: Optional[torch.Tensor] = None,
819
- decode_timestep: Union[float, List[float]] = 0.0,
820
- decode_noise_scale: Optional[Union[float, List[float]]] = None,
821
- output_type: Optional[str] = "pil",
822
- return_dict: bool = True,
823
- attention_kwargs: Optional[Dict[str, Any]] = None,
824
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
825
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
826
- max_sequence_length: int = 256,
827
- ):
828
- r"""
829
- Function invoked when calling the pipeline for generation.
830
-
831
- Args:
832
- conditions (`List[LTXVideoCondition], *optional*`):
833
- The list of frame-conditioning items for the video generation.If not provided, conditions will be
834
- created using `image`, `video`, `frame_index` and `strength`.
835
- image (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
836
- The image or images to condition the video generation. If not provided, one has to pass `video` or
837
- `conditions`.
838
- video (`List[PipelineImageInput]`, *optional*):
839
- The video to condition the video generation. If not provided, one has to pass `image` or `conditions`.
840
- frame_index (`int` or `List[int]`, *optional*):
841
- The frame index or frame indices at which the image or video will conditionally effect the video
842
- generation. If not provided, one has to pass `conditions`.
843
- strength (`float` or `List[float]`, *optional*):
844
- The strength or strengths of the conditioning effect. If not provided, one has to pass `conditions`.
845
- prompt (`str` or `List[str]`, *optional*):
846
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
847
- instead.
848
- height (`int`, defaults to `512`):
849
- The height in pixels of the generated image. This is set to 480 by default for the best results.
850
- width (`int`, defaults to `704`):
851
- The width in pixels of the generated image. This is set to 848 by default for the best results.
852
- num_frames (`int`, defaults to `161`):
853
- The number of video frames to generate
854
- num_inference_steps (`int`, *optional*, defaults to 50):
855
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
856
- expense of slower inference.
857
- timesteps (`List[int]`, *optional*):
858
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
859
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
860
- passed will be used. Must be in descending order.
861
- guidance_scale (`float`, defaults to `3 `):
862
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
863
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
864
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
865
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
866
- usually at the expense of lower image quality.
867
- num_videos_per_prompt (`int`, *optional*, defaults to 1):
868
- The number of videos to generate per prompt.
869
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
870
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
871
- to make generation deterministic.
872
- latents (`torch.Tensor`, *optional*):
873
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
874
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
875
- tensor will ge generated by sampling using the supplied random `generator`.
876
- prompt_embeds (`torch.Tensor`, *optional*):
877
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
878
- provided, text embeddings will be generated from `prompt` input argument.
879
- prompt_attention_mask (`torch.Tensor`, *optional*):
880
- Pre-generated attention mask for text embeddings.
881
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
882
- Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
883
- provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
884
- negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
885
- Pre-generated attention mask for negative text embeddings.
886
- decode_timestep (`float`, defaults to `0.0`):
887
- The timestep at which generated video is decoded.
888
- decode_noise_scale (`float`, defaults to `None`):
889
- The interpolation factor between random noise and denoised latents at the decode timestep.
890
- output_type (`str`, *optional*, defaults to `"pil"`):
891
- The output format of the generate image. Choose between
892
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
893
- return_dict (`bool`, *optional*, defaults to `True`):
894
- Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
895
- attention_kwargs (`dict`, *optional*):
896
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
897
- `self.processor` in
898
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
899
- callback_on_step_end (`Callable`, *optional*):
900
- A function that calls at the end of each denoising steps during the inference. The function is called
901
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
902
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
903
- `callback_on_step_end_tensor_inputs`.
904
- callback_on_step_end_tensor_inputs (`List`, *optional*):
905
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
906
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
907
- `._callback_tensor_inputs` attribute of your pipeline class.
908
- max_sequence_length (`int` defaults to `128 `):
909
- Maximum sequence length to use with the `prompt`.
910
-
911
- Examples:
912
-
913
- Returns:
914
- [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
915
- If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
916
- returned where the first element is a list with the generated images.
917
- """
918
-
919
- if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
920
- callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
921
- if latents is not None:
922
- raise ValueError("Passing latents is not yet supported.")
923
-
924
- # 1. Check inputs. Raise error if not correct
925
- self.check_inputs(
926
- prompt=prompt,
927
- conditions=conditions,
928
- image=image,
929
- video=video,
930
- frame_index=frame_index,
931
- strength=strength,
932
- height=height,
933
- width=width,
934
- callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
935
- prompt_embeds=prompt_embeds,
936
- negative_prompt_embeds=negative_prompt_embeds,
937
- prompt_attention_mask=prompt_attention_mask,
938
- negative_prompt_attention_mask=negative_prompt_attention_mask,
939
- )
940
-
941
- self._guidance_scale = guidance_scale
942
- self._attention_kwargs = attention_kwargs
943
- self._interrupt = False
944
- self._current_timestep = None
945
-
946
- # 2. Define call parameters
947
- if prompt is not None and isinstance(prompt, str):
948
- batch_size = 1
949
- elif prompt is not None and isinstance(prompt, list):
950
- batch_size = len(prompt)
951
- else:
952
- batch_size = prompt_embeds.shape[0]
953
-
954
- if conditions is not None:
955
- if not isinstance(conditions, list):
956
- conditions = [conditions]
957
-
958
- strength = [condition.strength for condition in conditions]
959
- frame_index = [condition.frame_index for condition in conditions]
960
- image = [condition.image for condition in conditions]
961
- video = [condition.video for condition in conditions]
962
- elif image is not None or video is not None:
963
- if not isinstance(image, list):
964
- image = [image]
965
- num_conditions = 1
966
- elif isinstance(image, list):
967
- num_conditions = len(image)
968
- if not isinstance(video, list):
969
- video = [video]
970
- num_conditions = 1
971
- elif isinstance(video, list):
972
- num_conditions = len(video)
973
-
974
- if not isinstance(frame_index, list):
975
- frame_index = [frame_index] * num_conditions
976
- if not isinstance(strength, list):
977
- strength = [strength] * num_conditions
978
-
979
- device = self._execution_device
980
-
981
- # 3. Prepare text embeddings
982
- (
983
- prompt_embeds,
984
- prompt_attention_mask,
985
- negative_prompt_embeds,
986
- negative_prompt_attention_mask,
987
- ) = self.encode_prompt(
988
- prompt=prompt,
989
- negative_prompt=negative_prompt,
990
- do_classifier_free_guidance=self.do_classifier_free_guidance,
991
- num_videos_per_prompt=num_videos_per_prompt,
992
- prompt_embeds=prompt_embeds,
993
- negative_prompt_embeds=negative_prompt_embeds,
994
- prompt_attention_mask=prompt_attention_mask,
995
- negative_prompt_attention_mask=negative_prompt_attention_mask,
996
- max_sequence_length=max_sequence_length,
997
- device=device,
998
- )
999
- if self.do_classifier_free_guidance:
1000
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1001
- prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
1002
-
1003
- vae_dtype = self.vae.dtype
1004
-
1005
- conditioning_tensors = []
1006
- is_conditioning_image_or_video = image is not None or video is not None
1007
- if is_conditioning_image_or_video:
1008
- for condition_image, condition_video, condition_frame_index, condition_strength in zip(
1009
- image, video, frame_index, strength
1010
- ):
1011
- if condition_image is not None:
1012
- condition_tensor = (
1013
- self.video_processor.preprocess(condition_image, height, width)
1014
- .unsqueeze(2)
1015
- .to(device, dtype=vae_dtype)
1016
- )
1017
- elif condition_video is not None:
1018
- condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
1019
- num_frames_input = condition_tensor.size(2)
1020
- num_frames_output = self.trim_conditioning_sequence(
1021
- condition_frame_index, num_frames_input, num_frames
1022
- )
1023
- condition_tensor = condition_tensor[:, :, :num_frames_output]
1024
- condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
1025
- else:
1026
- raise ValueError("Either `image` or `video` must be provided for conditioning.")
1027
-
1028
- if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
1029
- raise ValueError(
1030
- f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
1031
- f"but got {condition_tensor.size(2)} frames."
1032
- )
1033
- conditioning_tensors.append(condition_tensor)
1034
-
1035
- # 4. Prepare latent variables
1036
- num_channels_latents = self.transformer.config.in_channels
1037
- latents, conditioning_mask, video_coords, extra_conditioning_num_latents = self.prepare_latents(
1038
- conditioning_tensors,
1039
- strength,
1040
- frame_index,
1041
- batch_size=batch_size * num_videos_per_prompt,
1042
- num_channels_latents=num_channels_latents,
1043
- height=height,
1044
- width=width,
1045
- num_frames=num_frames,
1046
- generator=generator,
1047
- device=device,
1048
- dtype=torch.float32,
1049
- )
1050
-
1051
- video_coords = video_coords.float()
1052
- video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)
1053
-
1054
- init_latents = latents.clone() if is_conditioning_image_or_video else None
1055
-
1056
- if self.do_classifier_free_guidance:
1057
- video_coords = torch.cat([video_coords, video_coords], dim=0)
1058
-
1059
- # 5. Prepare timesteps
1060
- latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
1061
- latent_height = height // self.vae_spatial_compression_ratio
1062
- latent_width = width // self.vae_spatial_compression_ratio
1063
- sigmas = linear_quadratic_schedule(num_inference_steps)
1064
- timesteps = sigmas * 1000
1065
- timesteps, num_inference_steps = retrieve_timesteps(
1066
- self.scheduler,
1067
- num_inference_steps,
1068
- device,
1069
- timesteps=timesteps,
1070
- )
1071
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1072
- self._num_timesteps = len(timesteps)
1073
-
1074
- # 6. Denoising loop
1075
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1076
- for i, t in enumerate(timesteps):
1077
- if self.interrupt:
1078
- continue
1079
-
1080
- self._current_timestep = t
1081
-
1082
- if image_cond_noise_scale > 0 and init_latents is not None:
1083
- # Add timestep-dependent noise to the hard-conditioning latents
1084
- # This helps with motion continuity, especially when conditioned on a single frame
1085
- latents = self.add_noise_to_image_conditioning_latents(
1086
- t / 1000.0,
1087
- init_latents,
1088
- latents,
1089
- image_cond_noise_scale,
1090
- conditioning_mask,
1091
- generator,
1092
- )
1093
-
1094
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1095
- if is_conditioning_image_or_video:
1096
- conditioning_mask_model_input = (
1097
- torch.cat([conditioning_mask, conditioning_mask])
1098
- if self.do_classifier_free_guidance
1099
- else conditioning_mask
1100
- )
1101
- latent_model_input = latent_model_input.to(prompt_embeds.dtype)
1102
-
1103
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1104
- timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
1105
- if is_conditioning_image_or_video:
1106
- timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
1107
-
1108
- noise_pred = self.transformer(
1109
- hidden_states=latent_model_input,
1110
- encoder_hidden_states=prompt_embeds,
1111
- timestep=timestep,
1112
- encoder_attention_mask=prompt_attention_mask,
1113
- video_coords=video_coords,
1114
- attention_kwargs=attention_kwargs,
1115
- return_dict=False,
1116
- )[0]
1117
-
1118
- if self.do_classifier_free_guidance:
1119
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1120
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1121
- timestep, _ = timestep.chunk(2)
1122
-
1123
- denoised_latents = self.scheduler.step(
1124
- -noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
1125
- )[0]
1126
- if is_conditioning_image_or_video:
1127
- tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
1128
- latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
1129
- else:
1130
- latents = denoised_latents
1131
-
1132
- if callback_on_step_end is not None:
1133
- callback_kwargs = {}
1134
- for k in callback_on_step_end_tensor_inputs:
1135
- callback_kwargs[k] = locals()[k]
1136
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1137
-
1138
- latents = callback_outputs.pop("latents", latents)
1139
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1140
-
1141
- # call the callback, if provided
1142
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1143
- progress_bar.update()
1144
-
1145
- if XLA_AVAILABLE:
1146
- xm.mark_step()
1147
-
1148
- if is_conditioning_image_or_video:
1149
- latents = latents[:, extra_conditioning_num_latents:]
1150
-
1151
- latents = self._unpack_latents(
1152
- latents,
1153
- latent_num_frames,
1154
- latent_height,
1155
- latent_width,
1156
- self.transformer_spatial_patch_size,
1157
- self.transformer_temporal_patch_size,
1158
- )
1159
-
1160
- if output_type == "latent":
1161
- video = latents
1162
- else:
1163
- latents = self._denormalize_latents(
1164
- latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
1165
- )
1166
- latents = latents.to(prompt_embeds.dtype)
1167
-
1168
- if not self.vae.config.timestep_conditioning:
1169
- timestep = None
1170
- else:
1171
- noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
1172
- if not isinstance(decode_timestep, list):
1173
- decode_timestep = [decode_timestep] * batch_size
1174
- if decode_noise_scale is None:
1175
- decode_noise_scale = decode_timestep
1176
- elif not isinstance(decode_noise_scale, list):
1177
- decode_noise_scale = [decode_noise_scale] * batch_size
1178
-
1179
- timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
1180
- decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
1181
- :, None, None, None, None
1182
- ]
1183
- latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
1184
-
1185
- video = self.vae.decode(latents, timestep, return_dict=False)[0]
1186
- video = self.video_processor.postprocess_video(video, output_type=output_type)
1187
-
1188
- # Offload all models
1189
- self.maybe_free_model_hooks()
1190
-
1191
- if not return_dict:
1192
- return (video,)
1193
-
1194
- return LTXPipelineOutput(frames=video)