Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
from pipeline_ltx_condition import LTXVideoCondition, LTXConditionPipeline
|
5 |
-
from diffusers import LTXLatentUpsamplePipeline
|
6 |
-
|
7 |
-
|
8 |
from diffusers.utils import export_to_video, load_video
|
9 |
import numpy as np
|
10 |
|
@@ -32,10 +32,15 @@ def generate(prompt,
|
|
32 |
num_frames,
|
33 |
seed,
|
34 |
randomize_seed,
|
35 |
-
t2v, progress=gr.Progress(track_tqdm=True)):
|
36 |
|
|
|
|
|
|
|
37 |
expected_height, expected_width = 768, 1152
|
38 |
downscale_factor = 2 / 3
|
|
|
|
|
39 |
|
40 |
if randomize_seed:
|
41 |
seed = random.randint(0, MAX_SEED)
|
@@ -46,33 +51,30 @@ def generate(prompt,
|
|
46 |
conditions=condition1,
|
47 |
prompt=prompt,
|
48 |
negative_prompt=negative_prompt,
|
49 |
-
|
50 |
-
|
51 |
num_frames=num_frames,
|
52 |
num_inference_steps=steps,
|
53 |
decode_timestep = 0.05,
|
54 |
decode_noise_scale = 0.025,
|
55 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
56 |
-
|
57 |
).frames
|
58 |
else:
|
59 |
latents = pipe(
|
60 |
prompt=prompt,
|
61 |
negative_prompt=negative_prompt,
|
62 |
-
|
63 |
-
|
64 |
num_frames=num_frames,
|
65 |
num_inference_steps=steps,
|
66 |
decode_timestep = 0.05,
|
67 |
decode_noise_scale = 0.025,
|
68 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
69 |
-
|
70 |
).frames
|
71 |
|
72 |
-
|
73 |
-
# Text-only conditioning is also supported without the need to pass `conditions`
|
74 |
-
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
75 |
-
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
76 |
|
77 |
# latents = pipe(
|
78 |
# conditions=condition1,
|
@@ -90,32 +92,39 @@ def generate(prompt,
|
|
90 |
|
91 |
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
|
92 |
# The available latent upsampler upscales the height/width by 2x
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
# Part 4. Downscale the video to the expected resolution
|
117 |
-
|
118 |
-
video = [frame.resize((expected_width, expected_height)) for frame in latents[0]]
|
119 |
export_to_video(video, "output.mp4", fps=24)
|
120 |
return "output.mp4"
|
121 |
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
# from pipeline_ltx_condition import LTXVideoCondition, LTXConditionPipeline
|
5 |
+
# from diffusers import LTXLatentUpsamplePipeline
|
6 |
+
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
|
7 |
+
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
|
8 |
from diffusers.utils import export_to_video, load_video
|
9 |
import numpy as np
|
10 |
|
|
|
32 |
num_frames,
|
33 |
seed,
|
34 |
randomize_seed,
|
35 |
+
t2v, improve_texture=False, progress=gr.Progress(track_tqdm=True)):
|
36 |
|
37 |
+
|
38 |
+
# Part 1. Generate video at smaller resolution
|
39 |
+
# Text-only conditioning is also supported without the need to pass `conditions`
|
40 |
expected_height, expected_width = 768, 1152
|
41 |
downscale_factor = 2 / 3
|
42 |
+
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
43 |
+
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
44 |
|
45 |
if randomize_seed:
|
46 |
seed = random.randint(0, MAX_SEED)
|
|
|
51 |
conditions=condition1,
|
52 |
prompt=prompt,
|
53 |
negative_prompt=negative_prompt,
|
54 |
+
width=downscaled_width,
|
55 |
+
height=downscaled_height,
|
56 |
num_frames=num_frames,
|
57 |
num_inference_steps=steps,
|
58 |
decode_timestep = 0.05,
|
59 |
decode_noise_scale = 0.025,
|
60 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
61 |
+
output_type="latent",
|
62 |
).frames
|
63 |
else:
|
64 |
latents = pipe(
|
65 |
prompt=prompt,
|
66 |
negative_prompt=negative_prompt,
|
67 |
+
width=downscaled_width,
|
68 |
+
height=downscaled_height,
|
69 |
num_frames=num_frames,
|
70 |
num_inference_steps=steps,
|
71 |
decode_timestep = 0.05,
|
72 |
decode_noise_scale = 0.025,
|
73 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
74 |
+
output_type="latent",
|
75 |
).frames
|
76 |
|
77 |
+
|
|
|
|
|
|
|
78 |
|
79 |
# latents = pipe(
|
80 |
# conditions=condition1,
|
|
|
92 |
|
93 |
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
|
94 |
# The available latent upsampler upscales the height/width by 2x
|
95 |
+
if improve_texture:
|
96 |
+
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
97 |
+
upscaled_latents = pipe_upsample(
|
98 |
+
latents=latents,
|
99 |
+
output_type="latent"
|
100 |
+
).frames
|
101 |
+
|
102 |
+
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
|
103 |
|
104 |
+
video = pipe(
|
105 |
+
conditions=condition1,
|
106 |
+
prompt=prompt,
|
107 |
+
negative_prompt=negative_prompt,
|
108 |
+
width=upscaled_width,
|
109 |
+
height=upscaled_height,
|
110 |
+
num_frames=num_frames,
|
111 |
+
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
|
112 |
+
num_inference_steps=10,
|
113 |
+
latents=upscaled_latents,
|
114 |
+
decode_timestep=0.05,
|
115 |
+
image_cond_noise_scale=0.025,
|
116 |
+
generator=torch.Generator().manual_seed(seed),
|
117 |
+
output_type="pil",
|
118 |
+
).frames[0]
|
119 |
+
else:
|
120 |
+
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
121 |
+
video = pipe_upsample(
|
122 |
+
latents=latents,
|
123 |
+
# output_type="latent"
|
124 |
+
).frames[0]
|
125 |
|
126 |
# Part 4. Downscale the video to the expected resolution
|
127 |
+
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
|
|
128 |
export_to_video(video, "output.mp4", fps=24)
|
129 |
return "output.mp4"
|
130 |
|