File size: 6,956 Bytes
e37cf1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations
from typing import Literal

import torch
from torch import nn
import torch.nn.functional as F

from x_transformers import RMSNorm
from x_transformers.x_transformers import RotaryEmbedding

from f5_tts.model.modules import (
    TimestepEmbedding,
    ConvNeXtV2Block,
    ConvPositionEmbedding,
    Attention,
    AttnProcessor,
    FeedForward,
    precompute_freqs_cis,
    get_pos_embed_indices,
)


# Text embedding


class TextEmbedding(nn.Module):
    def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
        super().__init__()
        self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim)  # use 0 as filler token

        if conv_layers > 0:
            self.extra_modeling = True
            self.precompute_max_pos = 4096  # ~44s of 24khz audio
            self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
            self.text_blocks = nn.Sequential(
                *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
            )
        else:
            self.extra_modeling = False

    def forward(self, text: int["b nt"], seq_len, drop_text=False):  # noqa: F722
        text = text + 1  # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
        text = text[:, :seq_len]  # curtail if character tokens are more than the mel spec tokens
        batch, text_len = text.shape[0], text.shape[1]
        text = F.pad(text, (0, seq_len - text_len), value=0)

        if drop_text:  # cfg for text
            text = torch.zeros_like(text)

        text = self.text_embed(text)  # b n -> b n d

        # possible extra modeling
        if self.extra_modeling:
            # sinus pos emb
            batch_start = torch.zeros((batch,), dtype=torch.long)
            pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
            text_pos_embed = self.freqs_cis[pos_idx]
            text = text + text_pos_embed

            # convnextv2 blocks
            text = self.text_blocks(text)

        return text


# noised input audio and context mixing embedding


class InputEmbedding(nn.Module):
    def __init__(self, mel_dim, text_dim, out_dim):
        super().__init__()
        self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
        self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)

    def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False):  # noqa: F722
        if drop_audio_cond:  # cfg for cond audio
            cond = torch.zeros_like(cond)

        x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
        x = self.conv_pos_embed(x) + x
        return x


# Flat UNet Transformer backbone


class UNetT(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth=8,
        heads=8,
        dim_head=64,
        dropout=0.1,
        ff_mult=4,
        mel_dim=100,
        text_num_embeds=256,
        text_dim=None,
        conv_layers=0,
        skip_connect_type: Literal["add", "concat", "none"] = "concat",
    ):
        super().__init__()
        assert depth % 2 == 0, "UNet-Transformer's depth should be even."

        self.time_embed = TimestepEmbedding(dim)
        if text_dim is None:
            text_dim = mel_dim
        self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
        self.input_embed = InputEmbedding(mel_dim, text_dim, dim)

        self.rotary_embed = RotaryEmbedding(dim_head)

        # transformer layers & skip connections

        self.dim = dim
        self.skip_connect_type = skip_connect_type
        needs_skip_proj = skip_connect_type == "concat"

        self.depth = depth
        self.layers = nn.ModuleList([])

        for idx in range(depth):
            is_later_half = idx >= (depth // 2)

            attn_norm = RMSNorm(dim)
            attn = Attention(
                processor=AttnProcessor(),
                dim=dim,
                heads=heads,
                dim_head=dim_head,
                dropout=dropout,
            )

            ff_norm = RMSNorm(dim)
            ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")

            skip_proj = nn.Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None

            self.layers.append(
                nn.ModuleList(
                    [
                        skip_proj,
                        attn_norm,
                        attn,
                        ff_norm,
                        ff,
                    ]
                )
            )

        self.norm_out = RMSNorm(dim)
        self.proj_out = nn.Linear(dim, mel_dim)

    def forward(
        self,
        x: float["b n d"],  # nosied input audio  # noqa: F722
        cond: float["b n d"],  # masked cond audio  # noqa: F722
        text: int["b nt"],  # text  # noqa: F722
        time: float["b"] | float[""],  # time step  # noqa: F821 F722
        drop_audio_cond,  # cfg for cond audio
        drop_text,  # cfg for text
        mask: bool["b n"] | None = None,  # noqa: F722
    ):
        batch, seq_len = x.shape[0], x.shape[1]
        if time.ndim == 0:
            time = time.repeat(batch)

        # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
        t = self.time_embed(time)
        text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
        x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)

        # postfix time t to input x, [b n d] -> [b n+1 d]
        x = torch.cat([t.unsqueeze(1), x], dim=1)  # pack t to x
        if mask is not None:
            mask = F.pad(mask, (1, 0), value=1)

        rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)

        # flat unet transformer
        skip_connect_type = self.skip_connect_type
        skips = []
        for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
            layer = idx + 1

            # skip connection logic
            is_first_half = layer <= (self.depth // 2)
            is_later_half = not is_first_half

            if is_first_half:
                skips.append(x)

            if is_later_half:
                skip = skips.pop()
                if skip_connect_type == "concat":
                    x = torch.cat((x, skip), dim=-1)
                    x = maybe_skip_proj(x)
                elif skip_connect_type == "add":
                    x = x + skip

            # attention and feedforward blocks
            x = attn(attn_norm(x), rope=rope, mask=mask) + x
            x = ff(ff_norm(x)) + x

        assert len(skips) == 0

        x = self.norm_out(x)[:, 1:, :]  # unpack t from x

        return self.proj_out(x)