File size: 10,367 Bytes
baa1964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import json
import random
from importlib.resources import files
import torch
import torch.nn.functional as F
import torchaudio
from datasets import Dataset as Dataset_
from datasets import load_from_disk
from torch import nn
from torch.utils.data import Dataset, Sampler
from tqdm import tqdm
from f5_tts.model.modules import MelSpec
from f5_tts.model.utils import default
class HFDataset(Dataset):
def __init__(
self,
hf_dataset: Dataset,
target_sample_rate=24_000,
n_mel_channels=100,
hop_length=256,
n_fft=1024,
win_length=1024,
mel_spec_type="vocos",
):
self.data = hf_dataset
self.target_sample_rate = target_sample_rate
self.hop_length = hop_length
self.mel_spectrogram = MelSpec(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
)
def get_frame_len(self, index):
row = self.data[index]
audio = row["audio"]["array"]
sample_rate = row["audio"]["sampling_rate"]
return audio.shape[-1] / sample_rate * self.target_sample_rate / self.hop_length
def __len__(self):
return len(self.data)
def __getitem__(self, index):
row = self.data[index]
audio = row["audio"]["array"]
# logger.info(f"Audio shape: {audio.shape}")
sample_rate = row["audio"]["sampling_rate"]
duration = audio.shape[-1] / sample_rate
if duration > 30 or duration < 0.3:
return self.__getitem__((index + 1) % len(self.data))
audio_tensor = torch.from_numpy(audio).float()
if sample_rate != self.target_sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
audio_tensor = resampler(audio_tensor)
audio_tensor = audio_tensor.unsqueeze(0) # 't -> 1 t')
mel_spec = self.mel_spectrogram(audio_tensor)
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
text = row["text"]
return dict(
mel_spec=mel_spec,
text=text,
)
class CustomDataset(Dataset):
def __init__(
self,
custom_dataset: Dataset,
durations=None,
target_sample_rate=24_000,
hop_length=256,
n_mel_channels=100,
n_fft=1024,
win_length=1024,
mel_spec_type="vocos",
preprocessed_mel=False,
mel_spec_module: nn.Module | None = None,
):
self.data = custom_dataset
self.durations = durations
self.target_sample_rate = target_sample_rate
self.hop_length = hop_length
self.n_fft = n_fft
self.win_length = win_length
self.mel_spec_type = mel_spec_type
self.preprocessed_mel = preprocessed_mel
if not preprocessed_mel:
self.mel_spectrogram = default(
mel_spec_module,
MelSpec(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
)
def get_frame_len(self, index):
if (
self.durations is not None
): # Please make sure the separately provided durations are correct, otherwise 99.99% OOM
return self.durations[index] * self.target_sample_rate / self.hop_length
return self.data[index]["duration"] * self.target_sample_rate / self.hop_length
def __len__(self):
return len(self.data)
def __getitem__(self, index):
row = self.data[index]
audio_path = row["audio_path"]
text = row["text"]
duration = row["duration"]
if self.preprocessed_mel:
mel_spec = torch.tensor(row["mel_spec"])
else:
audio, source_sample_rate = torchaudio.load(audio_path)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if duration > 30 or duration < 0.3:
return self.__getitem__((index + 1) % len(self.data))
if source_sample_rate != self.target_sample_rate:
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
audio = resampler(audio)
mel_spec = self.mel_spectrogram(audio)
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t')
return dict(
mel_spec=mel_spec,
text=text,
)
# Dynamic Batch Sampler
class DynamicBatchSampler(Sampler[list[int]]):
"""Extension of Sampler that will do the following:
1. Change the batch size (essentially number of sequences)
in a batch to ensure that the total number of frames are less
than a certain threshold.
2. Make sure the padding efficiency in the batch is high.
"""
def __init__(
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False
):
self.sampler = sampler
self.frames_threshold = frames_threshold
self.max_samples = max_samples
indices, batches = [], []
data_source = self.sampler.data_source
for idx in tqdm(
self.sampler, desc="Sorting with sampler... if slow, check whether dataset is provided with duration"
):
indices.append((idx, data_source.get_frame_len(idx)))
indices.sort(key=lambda elem: elem[1])
batch = []
batch_frames = 0
for idx, frame_len in tqdm(
indices, desc=f"Creating dynamic batches with {frames_threshold} audio frames per gpu"
):
if batch_frames + frame_len <= self.frames_threshold and (max_samples == 0 or len(batch) < max_samples):
batch.append(idx)
batch_frames += frame_len
else:
if len(batch) > 0:
batches.append(batch)
if frame_len <= self.frames_threshold:
batch = [idx]
batch_frames = frame_len
else:
batch = []
batch_frames = 0
if not drop_last and len(batch) > 0:
batches.append(batch)
del indices
# if want to have different batches between epochs, may just set a seed and log it in ckpt
# cuz during multi-gpu training, although the batch on per gpu not change between epochs, the formed general minibatch is different
# e.g. for epoch n, use (random_seed + n)
random.seed(random_seed)
random.shuffle(batches)
self.batches = batches
def __iter__(self):
return iter(self.batches)
def __len__(self):
return len(self.batches)
# Load dataset
def load_dataset(
dataset_name: str,
tokenizer: str = "pinyin",
dataset_type: str = "CustomDataset",
audio_type: str = "raw",
mel_spec_module: nn.Module | None = None,
mel_spec_kwargs: dict = dict(),
) -> CustomDataset | HFDataset:
"""
dataset_type - "CustomDataset" if you want to use tokenizer name and default data path to load for train_dataset
- "CustomDatasetPath" if you just want to pass the full path to a preprocessed dataset without relying on tokenizer
"""
print("Loading dataset ...")
if dataset_type == "CustomDataset":
rel_data_path = str(files("f5_tts").joinpath(f"../../data/{dataset_name}_{tokenizer}"))
if audio_type == "raw":
try:
train_dataset = load_from_disk(f"{rel_data_path}/raw")
except: # noqa: E722
train_dataset = Dataset_.from_file(f"{rel_data_path}/raw.arrow")
preprocessed_mel = False
elif audio_type == "mel":
train_dataset = Dataset_.from_file(f"{rel_data_path}/mel.arrow")
preprocessed_mel = True
with open(f"{rel_data_path}/duration.json", "r", encoding="utf-8") as f:
data_dict = json.load(f)
durations = data_dict["duration"]
train_dataset = CustomDataset(
train_dataset,
durations=durations,
preprocessed_mel=preprocessed_mel,
mel_spec_module=mel_spec_module,
**mel_spec_kwargs,
)
elif dataset_type == "CustomDatasetPath":
try:
train_dataset = load_from_disk(f"{dataset_name}/raw")
except: # noqa: E722
train_dataset = Dataset_.from_file(f"{dataset_name}/raw.arrow")
with open(f"{dataset_name}/duration.json", "r", encoding="utf-8") as f:
data_dict = json.load(f)
durations = data_dict["duration"]
train_dataset = CustomDataset(
train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs
)
elif dataset_type == "HFDataset":
print(
"Should manually modify the path of huggingface dataset to your need.\n"
+ "May also the corresponding script cuz different dataset may have different format."
)
pre, post = dataset_name.split("_")
train_dataset = HFDataset(
load_dataset(f"{pre}/{pre}", split=f"train.{post}", cache_dir=str(files("f5_tts").joinpath("../../data"))),
)
return train_dataset
# collation
def collate_fn(batch):
mel_specs = [item["mel_spec"].squeeze(0) for item in batch]
mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs])
max_mel_length = mel_lengths.amax()
padded_mel_specs = []
for spec in mel_specs: # TODO. maybe records mask for attention here
padding = (0, max_mel_length - spec.size(-1))
padded_spec = F.pad(spec, padding, value=0)
padded_mel_specs.append(padded_spec)
mel_specs = torch.stack(padded_mel_specs)
text = [item["text"] for item in batch]
text_lengths = torch.LongTensor([len(item) for item in text])
return dict(
mel=mel_specs,
mel_lengths=mel_lengths,
text=text,
text_lengths=text_lengths,
)
|