|
import re |
|
import torch |
|
import torchaudio |
|
import gradio as gr |
|
import numpy as np |
|
import tempfile |
|
from einops import rearrange |
|
from vocos import Vocos |
|
from pydub import AudioSegment, silence |
|
from model import CFM, UNetT, DiT, MMDiT |
|
from cached_path import cached_path |
|
from model.utils import ( |
|
load_checkpoint, |
|
get_tokenizer, |
|
convert_char_to_pinyin, |
|
save_spectrogram, |
|
) |
|
from transformers import pipeline |
|
import click |
|
import soundfile as sf |
|
|
|
try: |
|
import spaces |
|
USING_SPACES = True |
|
except ImportError: |
|
USING_SPACES = False |
|
|
|
def gpu_decorator(func): |
|
if USING_SPACES: |
|
return spaces.GPU(func) |
|
else: |
|
return func |
|
|
|
device = ( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else "mps" if torch.backends.mps.is_available() else "cpu" |
|
) |
|
|
|
print(f"Using {device} device") |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model="openai/whisper-large-v3-turbo", |
|
torch_dtype=torch.float16, |
|
device=device, |
|
) |
|
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") |
|
|
|
|
|
|
|
target_sample_rate = 24000 |
|
n_mel_channels = 100 |
|
hop_length = 256 |
|
target_rms = 0.1 |
|
nfe_step = 32 |
|
cfg_strength = 2.0 |
|
ode_method = "euler" |
|
sway_sampling_coef = -1.0 |
|
speed = 1.0 |
|
fix_duration = None |
|
|
|
|
|
def load_model(page_name, repo_name, exp_name, model_cls, model_cfg, ckpt_step): |
|
ckpt_path = str(cached_path(f"hf://{page_name}/{repo_name}/{exp_name}/model_{ckpt_step}.pt")) |
|
|
|
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin") |
|
model = CFM( |
|
transformer=model_cls( |
|
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels |
|
), |
|
mel_spec_kwargs=dict( |
|
target_sample_rate=target_sample_rate, |
|
n_mel_channels=n_mel_channels, |
|
hop_length=hop_length, |
|
), |
|
odeint_kwargs=dict( |
|
method=ode_method, |
|
), |
|
vocab_char_map=vocab_char_map, |
|
).to(device) |
|
|
|
model = load_checkpoint(model, ckpt_path, device, use_ema = True) |
|
|
|
return model |
|
|
|
|
|
|
|
F5TTS_model_cfg = dict( |
|
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4 |
|
) |
|
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
|
|
F5TTS_ema_model = load_model( |
|
"Gregniuki", "F5-tts_English_German_Polish", "Polish", DiT, F5TTS_model_cfg, 1200000 |
|
) |
|
|
|
|
|
|
|
|
|
def chunk_text(text, max_chars=135): |
|
""" |
|
Splits the input text into chunks, each with a maximum number of characters. |
|
|
|
Args: |
|
text (str): The text to be split. |
|
max_chars (int): The maximum number of characters per chunk. |
|
|
|
Returns: |
|
List[str]: A list of text chunks. |
|
""" |
|
chunks = [] |
|
current_chunk = "" |
|
|
|
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text) |
|
|
|
for sentence in sentences: |
|
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars: |
|
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence |
|
else: |
|
if current_chunk: |
|
chunks.append(current_chunk.strip()) |
|
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence |
|
|
|
if current_chunk: |
|
chunks.append(current_chunk.strip()) |
|
|
|
return chunks |
|
|
|
@gpu_decorator |
|
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, cross_fade_duration=0.15, progress=gr.Progress()): |
|
if exp_name == "F5-TTS": |
|
ema_model = F5TTS_ema_model |
|
elif exp_name == "E2-TTS": |
|
ema_model = E2TTS_ema_model |
|
|
|
audio, sr = ref_audio |
|
if audio.shape[0] > 1: |
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
|
rms = torch.sqrt(torch.mean(torch.square(audio))) |
|
if rms < target_rms: |
|
audio = audio * target_rms / rms |
|
if sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sr, target_sample_rate) |
|
audio = resampler(audio) |
|
audio = audio.to(device) |
|
|
|
generated_waves = [] |
|
spectrograms = [] |
|
|
|
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): |
|
|
|
if len(ref_text[-1].encode('utf-8')) == 1: |
|
ref_text = ref_text + " " |
|
text_list = [ref_text + gen_text] |
|
final_text_list = convert_char_to_pinyin(text_list) |
|
|
|
|
|
ref_audio_len = audio.shape[-1] // hop_length |
|
zh_pause_punc = r"。,、;:?!" |
|
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text)) |
|
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text)) |
|
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) |
|
|
|
|
|
with torch.inference_mode(): |
|
generated, _ = ema_model.sample( |
|
cond=audio, |
|
text=final_text_list, |
|
duration=duration, |
|
steps=nfe_step, |
|
cfg_strength=cfg_strength, |
|
sway_sampling_coef=sway_sampling_coef, |
|
) |
|
|
|
generated = generated[:, ref_audio_len:, :] |
|
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n") |
|
generated_wave = vocos.decode(generated_mel_spec.cpu()) |
|
if rms < target_rms: |
|
generated_wave = generated_wave * rms / target_rms |
|
|
|
|
|
generated_wave = generated_wave.squeeze().cpu().numpy() |
|
|
|
generated_waves.append(generated_wave) |
|
spectrograms.append(generated_mel_spec[0].cpu().numpy()) |
|
|
|
|
|
if cross_fade_duration <= 0: |
|
|
|
final_wave = np.concatenate(generated_waves) |
|
else: |
|
final_wave = generated_waves[0] |
|
for i in range(1, len(generated_waves)): |
|
prev_wave = final_wave |
|
next_wave = generated_waves[i] |
|
|
|
|
|
cross_fade_samples = int(cross_fade_duration * target_sample_rate) |
|
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) |
|
|
|
if cross_fade_samples <= 0: |
|
|
|
final_wave = np.concatenate([prev_wave, next_wave]) |
|
continue |
|
|
|
|
|
prev_overlap = prev_wave[-cross_fade_samples:] |
|
next_overlap = next_wave[:cross_fade_samples] |
|
|
|
|
|
fade_out = np.linspace(1, 0, cross_fade_samples) |
|
fade_in = np.linspace(0, 1, cross_fade_samples) |
|
|
|
|
|
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in |
|
|
|
|
|
new_wave = np.concatenate([ |
|
prev_wave[:-cross_fade_samples], |
|
cross_faded_overlap, |
|
next_wave[cross_fade_samples:] |
|
]) |
|
|
|
final_wave = new_wave |
|
|
|
|
|
if remove_silence: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: |
|
sf.write(f.name, final_wave, target_sample_rate) |
|
aseg = AudioSegment.from_file(f.name) |
|
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500) |
|
non_silent_wave = AudioSegment.silent(duration=0) |
|
for non_silent_seg in non_silent_segs: |
|
non_silent_wave += non_silent_seg |
|
aseg = non_silent_wave |
|
aseg.export(f.name, format="wav") |
|
final_wave, _ = torchaudio.load(f.name) |
|
final_wave = final_wave.squeeze().cpu().numpy() |
|
|
|
|
|
combined_spectrogram = np.concatenate(spectrograms, axis=1) |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: |
|
spectrogram_path = tmp_spectrogram.name |
|
save_spectrogram(combined_spectrogram, spectrogram_path) |
|
|
|
return (target_sample_rate, final_wave), spectrogram_path |
|
|
|
@gpu_decorator |
|
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, cross_fade_duration=0.15): |
|
|
|
print(gen_text) |
|
|
|
gr.Info("Converting audio...") |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: |
|
aseg = AudioSegment.from_file(ref_audio_orig) |
|
|
|
non_silent_segs = silence.split_on_silence( |
|
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000 |
|
) |
|
non_silent_wave = AudioSegment.silent(duration=0) |
|
for non_silent_seg in non_silent_segs: |
|
non_silent_wave += non_silent_seg |
|
aseg = non_silent_wave |
|
|
|
audio_duration = len(aseg) |
|
if audio_duration > 15000: |
|
gr.Warning("Audio is over 15s, clipping to only first 15s.") |
|
aseg = aseg[:15000] |
|
aseg.export(f.name, format="wav") |
|
ref_audio = f.name |
|
|
|
if not ref_text.strip(): |
|
gr.Info("No reference text provided, transcribing reference audio...") |
|
ref_text = pipe( |
|
ref_audio, |
|
chunk_length_s=30, |
|
batch_size=128, |
|
generate_kwargs={"task": "transcribe"}, |
|
return_timestamps=False, |
|
)["text"].strip() |
|
gr.Info("Finished transcription") |
|
else: |
|
gr.Info("Using custom reference text...") |
|
|
|
|
|
if not ref_text.endswith(". "): |
|
if ref_text.endswith("."): |
|
ref_text += " " |
|
else: |
|
ref_text += ". " |
|
|
|
audio, sr = torchaudio.load(ref_audio) |
|
|
|
|
|
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) |
|
gen_text_batches = chunk_text(gen_text, max_chars=max_chars) |
|
print('ref_text', ref_text) |
|
for i, batch_text in enumerate(gen_text_batches): |
|
print(f'gen_text {i}', batch_text) |
|
|
|
gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches") |
|
return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence, cross_fade_duration) |
|
|
|
|
|
@gpu_decorator |
|
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence): |
|
|
|
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE) |
|
speaker_blocks = speaker_pattern.split(script)[1:] |
|
|
|
generated_audio_segments = [] |
|
|
|
for i in range(0, len(speaker_blocks), 2): |
|
speaker = speaker_blocks[i] |
|
text = speaker_blocks[i+1].strip() |
|
|
|
|
|
if speaker == speaker1_name: |
|
ref_audio = ref_audio1 |
|
ref_text = ref_text1 |
|
elif speaker == speaker2_name: |
|
ref_audio = ref_audio2 |
|
ref_text = ref_text2 |
|
else: |
|
continue |
|
|
|
|
|
audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence) |
|
|
|
|
|
sr, audio_data = audio |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: |
|
sf.write(temp_file.name, audio_data, sr) |
|
audio_segment = AudioSegment.from_wav(temp_file.name) |
|
|
|
generated_audio_segments.append(audio_segment) |
|
|
|
|
|
pause = AudioSegment.silent(duration=500) |
|
generated_audio_segments.append(pause) |
|
|
|
|
|
final_podcast = sum(generated_audio_segments) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: |
|
podcast_path = temp_file.name |
|
final_podcast.export(podcast_path, format="wav") |
|
|
|
return podcast_path |
|
|
|
def parse_speechtypes_text(gen_text): |
|
|
|
pattern = r'\((.*?)\)' |
|
|
|
|
|
tokens = re.split(pattern, gen_text) |
|
|
|
segments = [] |
|
|
|
current_emotion = 'Regular' |
|
|
|
for i in range(len(tokens)): |
|
if i % 2 == 0: |
|
|
|
text = tokens[i].strip() |
|
if text: |
|
segments.append({'emotion': current_emotion, 'text': text}) |
|
else: |
|
|
|
emotion = tokens[i].strip() |
|
current_emotion = emotion |
|
|
|
return segments |
|
|
|
def update_speed(new_speed): |
|
global speed |
|
speed = new_speed |
|
return f"Speed set to: {speed}" |
|
|
|
with gr.Blocks() as app_credits: |
|
gr.Markdown(""" |
|
# Credits |
|
|
|
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) |
|
* [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation |
|
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation |
|
""") |
|
with gr.Blocks() as app_tts: |
|
gr.Markdown("# Batched TTS") |
|
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") |
|
gen_text_input = gr.Textbox(label="Text to Generate", lines=10) |
|
model_choice = gr.Radio( |
|
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS" |
|
) |
|
generate_btn = gr.Button("Synthesize", variant="primary") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
ref_text_input = gr.Textbox( |
|
label="Reference Text", |
|
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", |
|
lines=2, |
|
) |
|
remove_silence = gr.Checkbox( |
|
label="Remove Silences", |
|
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", |
|
value=False, |
|
) |
|
speed_slider = gr.Slider( |
|
label="Speed", |
|
minimum=0.3, |
|
maximum=2.0, |
|
value=speed, |
|
step=0.1, |
|
info="Adjust the speed of the audio.", |
|
) |
|
cross_fade_duration_slider = gr.Slider( |
|
label="Cross-Fade Duration (s)", |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.15, |
|
step=0.01, |
|
info="Set the duration of the cross-fade between audio clips.", |
|
) |
|
speed_slider.change(update_speed, inputs=speed_slider) |
|
|
|
audio_output = gr.Audio(label="Synthesized Audio") |
|
spectrogram_output = gr.Image(label="Spectrogram") |
|
|
|
generate_btn.click( |
|
infer, |
|
inputs=[ |
|
ref_audio_input, |
|
ref_text_input, |
|
gen_text_input, |
|
model_choice, |
|
remove_silence, |
|
cross_fade_duration_slider, |
|
], |
|
outputs=[audio_output, spectrogram_output], |
|
) |
|
|
|
with gr.Blocks() as app_podcast: |
|
gr.Markdown("# Podcast Generation") |
|
speaker1_name = gr.Textbox(label="Speaker 1 Name") |
|
ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath") |
|
ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2) |
|
|
|
speaker2_name = gr.Textbox(label="Speaker 2 Name") |
|
ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath") |
|
ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2) |
|
|
|
script_input = gr.Textbox(label="Podcast Script", lines=10, |
|
placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...") |
|
|
|
podcast_model_choice = gr.Radio( |
|
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS" |
|
) |
|
podcast_remove_silence = gr.Checkbox( |
|
label="Remove Silences", |
|
value=True, |
|
) |
|
generate_podcast_btn = gr.Button("Generate Podcast", variant="primary") |
|
podcast_output = gr.Audio(label="Generated Podcast") |
|
|
|
def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence): |
|
return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence) |
|
|
|
generate_podcast_btn.click( |
|
podcast_generation, |
|
inputs=[ |
|
script_input, |
|
speaker1_name, |
|
ref_audio_input1, |
|
ref_text_input1, |
|
speaker2_name, |
|
ref_audio_input2, |
|
ref_text_input2, |
|
podcast_model_choice, |
|
podcast_remove_silence, |
|
], |
|
outputs=podcast_output, |
|
) |
|
|
|
def parse_emotional_text(gen_text): |
|
|
|
pattern = r'\((.*?)\)' |
|
|
|
|
|
tokens = re.split(pattern, gen_text) |
|
|
|
segments = [] |
|
|
|
current_emotion = 'Regular' |
|
|
|
for i in range(len(tokens)): |
|
if i % 2 == 0: |
|
|
|
text = tokens[i].strip() |
|
if text: |
|
segments.append({'emotion': current_emotion, 'text': text}) |
|
else: |
|
|
|
emotion = tokens[i].strip() |
|
current_emotion = emotion |
|
|
|
return segments |
|
|
|
with gr.Blocks() as app_emotional: |
|
|
|
gr.Markdown( |
|
""" |
|
# Multiple Speech-Type Generation |
|
|
|
This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified. |
|
|
|
**Example Input:** |
|
|
|
(Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?! |
|
""" |
|
) |
|
|
|
gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.") |
|
|
|
|
|
with gr.Row(): |
|
regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False) |
|
regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath') |
|
regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2) |
|
|
|
|
|
max_speech_types = 10 |
|
speech_type_names = [] |
|
speech_type_audios = [] |
|
speech_type_ref_texts = [] |
|
speech_type_delete_btns = [] |
|
|
|
for i in range(max_speech_types - 1): |
|
with gr.Row(): |
|
name_input = gr.Textbox(label='Speech Type Name', visible=False) |
|
audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False) |
|
ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False) |
|
delete_btn = gr.Button("Delete", variant="secondary", visible=False) |
|
speech_type_names.append(name_input) |
|
speech_type_audios.append(audio_input) |
|
speech_type_ref_texts.append(ref_text_input) |
|
speech_type_delete_btns.append(delete_btn) |
|
|
|
|
|
add_speech_type_btn = gr.Button("Add Speech Type") |
|
|
|
|
|
speech_type_count = gr.State(value=0) |
|
|
|
|
|
def add_speech_type_fn(speech_type_count): |
|
if speech_type_count < max_speech_types - 1: |
|
speech_type_count += 1 |
|
|
|
name_updates = [] |
|
audio_updates = [] |
|
ref_text_updates = [] |
|
delete_btn_updates = [] |
|
for i in range(max_speech_types - 1): |
|
if i < speech_type_count: |
|
name_updates.append(gr.update(visible=True)) |
|
audio_updates.append(gr.update(visible=True)) |
|
ref_text_updates.append(gr.update(visible=True)) |
|
delete_btn_updates.append(gr.update(visible=True)) |
|
else: |
|
name_updates.append(gr.update()) |
|
audio_updates.append(gr.update()) |
|
ref_text_updates.append(gr.update()) |
|
delete_btn_updates.append(gr.update()) |
|
else: |
|
|
|
|
|
name_updates = [gr.update() for _ in range(max_speech_types - 1)] |
|
audio_updates = [gr.update() for _ in range(max_speech_types - 1)] |
|
ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)] |
|
delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)] |
|
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates |
|
|
|
add_speech_type_btn.click( |
|
add_speech_type_fn, |
|
inputs=speech_type_count, |
|
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns |
|
) |
|
|
|
|
|
def make_delete_speech_type_fn(index): |
|
def delete_speech_type_fn(speech_type_count): |
|
|
|
name_updates = [] |
|
audio_updates = [] |
|
ref_text_updates = [] |
|
delete_btn_updates = [] |
|
|
|
for i in range(max_speech_types - 1): |
|
if i == index: |
|
name_updates.append(gr.update(visible=False, value='')) |
|
audio_updates.append(gr.update(visible=False, value=None)) |
|
ref_text_updates.append(gr.update(visible=False, value='')) |
|
delete_btn_updates.append(gr.update(visible=False)) |
|
else: |
|
name_updates.append(gr.update()) |
|
audio_updates.append(gr.update()) |
|
ref_text_updates.append(gr.update()) |
|
delete_btn_updates.append(gr.update()) |
|
|
|
speech_type_count = max(0, speech_type_count - 1) |
|
|
|
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates |
|
|
|
return delete_speech_type_fn |
|
|
|
for i, delete_btn in enumerate(speech_type_delete_btns): |
|
delete_fn = make_delete_speech_type_fn(i) |
|
delete_btn.click( |
|
delete_fn, |
|
inputs=speech_type_count, |
|
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns |
|
) |
|
|
|
|
|
gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10) |
|
|
|
|
|
model_choice_emotional = gr.Radio( |
|
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS" |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
remove_silence_emotional = gr.Checkbox( |
|
label="Remove Silences", |
|
value=True, |
|
) |
|
|
|
|
|
generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary") |
|
|
|
|
|
audio_output_emotional = gr.Audio(label="Synthesized Audio") |
|
@gpu_decorator |
|
def generate_emotional_speech( |
|
regular_audio, |
|
regular_ref_text, |
|
gen_text, |
|
*args, |
|
): |
|
num_additional_speech_types = max_speech_types - 1 |
|
speech_type_names_list = args[:num_additional_speech_types] |
|
speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types] |
|
speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types] |
|
model_choice = args[3 * num_additional_speech_types] |
|
remove_silence = args[3 * num_additional_speech_types + 1] |
|
|
|
|
|
speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}} |
|
|
|
for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list): |
|
if name_input and audio_input: |
|
speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input} |
|
|
|
|
|
segments = parse_speechtypes_text(gen_text) |
|
|
|
|
|
generated_audio_segments = [] |
|
current_emotion = 'Regular' |
|
|
|
for segment in segments: |
|
emotion = segment['emotion'] |
|
text = segment['text'] |
|
|
|
if emotion in speech_types: |
|
current_emotion = emotion |
|
else: |
|
|
|
current_emotion = 'Regular' |
|
|
|
ref_audio = speech_types[current_emotion]['audio'] |
|
ref_text = speech_types[current_emotion].get('ref_text', '') |
|
|
|
|
|
audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, 0) |
|
sr, audio_data = audio |
|
|
|
generated_audio_segments.append(audio_data) |
|
|
|
|
|
if generated_audio_segments: |
|
final_audio_data = np.concatenate(generated_audio_segments) |
|
return (sr, final_audio_data) |
|
else: |
|
gr.Warning("No audio generated.") |
|
return None |
|
|
|
generate_emotional_btn.click( |
|
generate_emotional_speech, |
|
inputs=[ |
|
regular_audio, |
|
regular_ref_text, |
|
gen_text_input_emotional, |
|
] + speech_type_names + speech_type_audios + speech_type_ref_texts + [ |
|
model_choice_emotional, |
|
remove_silence_emotional, |
|
], |
|
outputs=audio_output_emotional, |
|
) |
|
|
|
|
|
def validate_speech_types( |
|
gen_text, |
|
regular_name, |
|
*args |
|
): |
|
num_additional_speech_types = max_speech_types - 1 |
|
speech_type_names_list = args[:num_additional_speech_types] |
|
|
|
|
|
speech_types_available = set() |
|
if regular_name: |
|
speech_types_available.add(regular_name) |
|
for name_input in speech_type_names_list: |
|
if name_input: |
|
speech_types_available.add(name_input) |
|
|
|
|
|
segments = parse_emotional_text(gen_text) |
|
speech_types_in_text = set(segment['emotion'] for segment in segments) |
|
|
|
|
|
missing_speech_types = speech_types_in_text - speech_types_available |
|
|
|
if missing_speech_types: |
|
|
|
return gr.update(interactive=False) |
|
else: |
|
|
|
return gr.update(interactive=True) |
|
|
|
gen_text_input_emotional.change( |
|
validate_speech_types, |
|
inputs=[gen_text_input_emotional, regular_name] + speech_type_names, |
|
outputs=generate_emotional_btn |
|
) |
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
""" |
|
# E2/F5 TTS |
|
|
|
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models: |
|
|
|
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) |
|
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS) |
|
|
|
The checkpoints support English and Chinese. |
|
|
|
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. |
|
|
|
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.** |
|
""" |
|
) |
|
gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"]) |
|
|
|
@click.command() |
|
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on") |
|
@click.option("--host", "-H", default=None, help="Host to run the app on") |
|
@click.option( |
|
"--share", |
|
"-s", |
|
default=False, |
|
is_flag=True, |
|
help="Share the app via Gradio share link", |
|
) |
|
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") |
|
def main(port, host, share, api): |
|
global app |
|
print(f"Starting app...") |
|
app.queue(api_open=api).launch( |
|
server_name=host, server_port=port, share=share, show_api=api |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |