Upload 2 files
Browse files- f5-tts/api.py +151 -0
- f5-tts/socket.py +159 -0
f5-tts/api.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import sys
|
3 |
+
from importlib.resources import files
|
4 |
+
|
5 |
+
import soundfile as sf
|
6 |
+
import torch
|
7 |
+
import tqdm
|
8 |
+
from cached_path import cached_path
|
9 |
+
|
10 |
+
from f5_tts.infer.utils_infer import (
|
11 |
+
hop_length,
|
12 |
+
infer_process,
|
13 |
+
load_model,
|
14 |
+
load_vocoder,
|
15 |
+
preprocess_ref_audio_text,
|
16 |
+
remove_silence_for_generated_wav,
|
17 |
+
save_spectrogram,
|
18 |
+
target_sample_rate,
|
19 |
+
)
|
20 |
+
from f5_tts.model import DiT, UNetT
|
21 |
+
from f5_tts.model.utils import seed_everything
|
22 |
+
|
23 |
+
|
24 |
+
class F5TTS:
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
model_type="F5-TTS",
|
28 |
+
ckpt_file="",
|
29 |
+
vocab_file="",
|
30 |
+
ode_method="euler",
|
31 |
+
use_ema=True,
|
32 |
+
vocoder_name="vocos",
|
33 |
+
local_path=None,
|
34 |
+
device=None,
|
35 |
+
):
|
36 |
+
# Initialize parameters
|
37 |
+
self.final_wave = None
|
38 |
+
self.target_sample_rate = target_sample_rate
|
39 |
+
self.hop_length = hop_length
|
40 |
+
self.seed = -1
|
41 |
+
self.mel_spec_type = vocoder_name
|
42 |
+
|
43 |
+
# Set device
|
44 |
+
self.device = device or (
|
45 |
+
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
46 |
+
)
|
47 |
+
|
48 |
+
# Load models
|
49 |
+
self.load_vocoder_model(vocoder_name, local_path)
|
50 |
+
self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema)
|
51 |
+
|
52 |
+
def load_vocoder_model(self, vocoder_name, local_path):
|
53 |
+
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
|
54 |
+
|
55 |
+
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema):
|
56 |
+
if model_type == "F5-TTS":
|
57 |
+
if not ckpt_file:
|
58 |
+
if mel_spec_type == "vocos":
|
59 |
+
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
60 |
+
elif mel_spec_type == "bigvgan":
|
61 |
+
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt"))
|
62 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
63 |
+
model_cls = DiT
|
64 |
+
elif model_type == "E2-TTS":
|
65 |
+
if not ckpt_file:
|
66 |
+
ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
67 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
68 |
+
model_cls = UNetT
|
69 |
+
else:
|
70 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
71 |
+
|
72 |
+
self.ema_model = load_model(
|
73 |
+
model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
|
74 |
+
)
|
75 |
+
|
76 |
+
def export_wav(self, wav, file_wave, remove_silence=False):
|
77 |
+
sf.write(file_wave, wav, self.target_sample_rate)
|
78 |
+
|
79 |
+
if remove_silence:
|
80 |
+
remove_silence_for_generated_wav(file_wave)
|
81 |
+
|
82 |
+
def export_spectrogram(self, spect, file_spect):
|
83 |
+
save_spectrogram(spect, file_spect)
|
84 |
+
|
85 |
+
def infer(
|
86 |
+
self,
|
87 |
+
ref_file,
|
88 |
+
ref_text,
|
89 |
+
gen_text,
|
90 |
+
show_info=print,
|
91 |
+
progress=tqdm,
|
92 |
+
target_rms=0.1,
|
93 |
+
cross_fade_duration=0.15,
|
94 |
+
sway_sampling_coef=-1,
|
95 |
+
cfg_strength=2,
|
96 |
+
nfe_step=32,
|
97 |
+
speed=1.0,
|
98 |
+
fix_duration=None,
|
99 |
+
remove_silence=False,
|
100 |
+
file_wave=None,
|
101 |
+
file_spect=None,
|
102 |
+
seed=-1,
|
103 |
+
):
|
104 |
+
if seed == -1:
|
105 |
+
seed = random.randint(0, sys.maxsize)
|
106 |
+
seed_everything(seed)
|
107 |
+
self.seed = seed
|
108 |
+
|
109 |
+
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
|
110 |
+
|
111 |
+
wav, sr, spect = infer_process(
|
112 |
+
ref_file,
|
113 |
+
ref_text,
|
114 |
+
gen_text,
|
115 |
+
self.ema_model,
|
116 |
+
self.vocoder,
|
117 |
+
self.mel_spec_type,
|
118 |
+
show_info=show_info,
|
119 |
+
progress=progress,
|
120 |
+
target_rms=target_rms,
|
121 |
+
cross_fade_duration=cross_fade_duration,
|
122 |
+
nfe_step=nfe_step,
|
123 |
+
cfg_strength=cfg_strength,
|
124 |
+
sway_sampling_coef=sway_sampling_coef,
|
125 |
+
speed=speed,
|
126 |
+
fix_duration=fix_duration,
|
127 |
+
device=self.device,
|
128 |
+
)
|
129 |
+
|
130 |
+
if file_wave is not None:
|
131 |
+
self.export_wav(wav, file_wave, remove_silence)
|
132 |
+
|
133 |
+
if file_spect is not None:
|
134 |
+
self.export_spectrogram(spect, file_spect)
|
135 |
+
|
136 |
+
return wav, sr, spect
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
f5tts = F5TTS()
|
141 |
+
|
142 |
+
wav, sr, spect = f5tts.infer(
|
143 |
+
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
144 |
+
ref_text="some call me nature, others call me mother nature.",
|
145 |
+
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
146 |
+
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
147 |
+
file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
148 |
+
seed=-1, # random seed = -1
|
149 |
+
)
|
150 |
+
|
151 |
+
print("seed :", f5tts.seed)
|
f5-tts/socket.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import socket
|
2 |
+
import struct
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from threading import Thread
|
6 |
+
|
7 |
+
|
8 |
+
import gc
|
9 |
+
import traceback
|
10 |
+
|
11 |
+
|
12 |
+
from infer.utils_infer import infer_batch_process, preprocess_ref_audio_text, load_vocoder, load_model
|
13 |
+
from model.backbones.dit import DiT
|
14 |
+
|
15 |
+
|
16 |
+
class TTSStreamingProcessor:
|
17 |
+
def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
|
18 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
# Load the model using the provided checkpoint and vocab files
|
21 |
+
self.model = load_model(
|
22 |
+
DiT,
|
23 |
+
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
24 |
+
ckpt_file,
|
25 |
+
vocab_file,
|
26 |
+
).to(self.device, dtype=dtype)
|
27 |
+
|
28 |
+
# Load the vocoder
|
29 |
+
self.vocoder = load_vocoder(is_local=False)
|
30 |
+
|
31 |
+
# Set sampling rate for streaming
|
32 |
+
self.sampling_rate = 24000 # Consistency with client
|
33 |
+
|
34 |
+
# Set reference audio and text
|
35 |
+
self.ref_audio = ref_audio
|
36 |
+
self.ref_text = ref_text
|
37 |
+
|
38 |
+
# Warm up the model
|
39 |
+
self._warm_up()
|
40 |
+
|
41 |
+
def _warm_up(self):
|
42 |
+
"""Warm up the model with a dummy input to ensure it's ready for real-time processing."""
|
43 |
+
print("Warming up the model...")
|
44 |
+
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
|
45 |
+
audio, sr = torchaudio.load(ref_audio)
|
46 |
+
gen_text = "Warm-up text for the model."
|
47 |
+
|
48 |
+
# Pass the vocoder as an argument here
|
49 |
+
infer_batch_process((audio, sr), ref_text, [gen_text], self.model, self.vocoder, device=self.device)
|
50 |
+
print("Warm-up completed.")
|
51 |
+
|
52 |
+
def generate_stream(self, text, play_steps_in_s=0.5):
|
53 |
+
"""Generate audio in chunks and yield them in real-time."""
|
54 |
+
# Preprocess the reference audio and text
|
55 |
+
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
|
56 |
+
|
57 |
+
# Load reference audio
|
58 |
+
audio, sr = torchaudio.load(ref_audio)
|
59 |
+
|
60 |
+
# Run inference for the input text
|
61 |
+
audio_chunk, final_sample_rate, _ = infer_batch_process(
|
62 |
+
(audio, sr),
|
63 |
+
ref_text,
|
64 |
+
[text],
|
65 |
+
self.model,
|
66 |
+
self.vocoder,
|
67 |
+
device=self.device, # Pass vocoder here
|
68 |
+
)
|
69 |
+
|
70 |
+
# Break the generated audio into chunks and send them
|
71 |
+
chunk_size = int(final_sample_rate * play_steps_in_s)
|
72 |
+
|
73 |
+
for i in range(0, len(audio_chunk), chunk_size):
|
74 |
+
chunk = audio_chunk[i : i + chunk_size]
|
75 |
+
|
76 |
+
# Check if it's the final chunk
|
77 |
+
if i + chunk_size >= len(audio_chunk):
|
78 |
+
chunk = audio_chunk[i:]
|
79 |
+
|
80 |
+
# Avoid sending empty or repeated chunks
|
81 |
+
if len(chunk) == 0:
|
82 |
+
break
|
83 |
+
|
84 |
+
# Pack and send the audio chunk
|
85 |
+
packed_audio = struct.pack(f"{len(chunk)}f", *chunk)
|
86 |
+
yield packed_audio
|
87 |
+
|
88 |
+
# Ensure that no final word is repeated by not resending partial chunks
|
89 |
+
if len(audio_chunk) % chunk_size != 0:
|
90 |
+
remaining_chunk = audio_chunk[-(len(audio_chunk) % chunk_size) :]
|
91 |
+
packed_audio = struct.pack(f"{len(remaining_chunk)}f", *remaining_chunk)
|
92 |
+
yield packed_audio
|
93 |
+
|
94 |
+
|
95 |
+
def handle_client(client_socket, processor):
|
96 |
+
try:
|
97 |
+
while True:
|
98 |
+
# Receive data from the client
|
99 |
+
data = client_socket.recv(1024).decode("utf-8")
|
100 |
+
if not data:
|
101 |
+
break
|
102 |
+
|
103 |
+
try:
|
104 |
+
# The client sends the text input
|
105 |
+
text = data.strip()
|
106 |
+
|
107 |
+
# Generate and stream audio chunks
|
108 |
+
for audio_chunk in processor.generate_stream(text):
|
109 |
+
client_socket.sendall(audio_chunk)
|
110 |
+
|
111 |
+
# Send end-of-audio signal
|
112 |
+
client_socket.sendall(b"END_OF_AUDIO")
|
113 |
+
|
114 |
+
except Exception as inner_e:
|
115 |
+
print(f"Error during processing: {inner_e}")
|
116 |
+
traceback.print_exc() # Print the full traceback to diagnose the issue
|
117 |
+
break
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
print(f"Error handling client: {e}")
|
121 |
+
traceback.print_exc()
|
122 |
+
finally:
|
123 |
+
client_socket.close()
|
124 |
+
|
125 |
+
|
126 |
+
def start_server(host, port, processor):
|
127 |
+
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
128 |
+
server.bind((host, port))
|
129 |
+
server.listen(5)
|
130 |
+
print(f"Server listening on {host}:{port}")
|
131 |
+
|
132 |
+
while True:
|
133 |
+
client_socket, addr = server.accept()
|
134 |
+
print(f"Accepted connection from {addr}")
|
135 |
+
client_handler = Thread(target=handle_client, args=(client_socket, processor))
|
136 |
+
client_handler.start()
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
try:
|
141 |
+
# Load the model and vocoder using the provided files
|
142 |
+
ckpt_file = "" # pointing your checkpoint "ckpts/model/model_1096.pt"
|
143 |
+
vocab_file = "" # Add vocab file path if needed
|
144 |
+
ref_audio = "" # add ref audio"./tests/ref_audio/reference.wav"
|
145 |
+
ref_text = ""
|
146 |
+
|
147 |
+
# Initialize the processor with the model and vocoder
|
148 |
+
processor = TTSStreamingProcessor(
|
149 |
+
ckpt_file=ckpt_file,
|
150 |
+
vocab_file=vocab_file,
|
151 |
+
ref_audio=ref_audio,
|
152 |
+
ref_text=ref_text,
|
153 |
+
dtype=torch.float32,
|
154 |
+
)
|
155 |
+
|
156 |
+
# Start the server
|
157 |
+
start_server("0.0.0.0", 9998, processor)
|
158 |
+
except KeyboardInterrupt:
|
159 |
+
gc.collect()
|