Delete model/utils.py
Browse files- model/utils.py +0 -185
model/utils.py
DELETED
@@ -1,185 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import os
|
4 |
-
import random
|
5 |
-
from collections import defaultdict
|
6 |
-
from importlib.resources import files
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from torch.nn.utils.rnn import pad_sequence
|
10 |
-
|
11 |
-
import jieba
|
12 |
-
from pypinyin import lazy_pinyin, Style
|
13 |
-
|
14 |
-
|
15 |
-
# seed everything
|
16 |
-
|
17 |
-
|
18 |
-
def seed_everything(seed=0):
|
19 |
-
random.seed(seed)
|
20 |
-
os.environ["PYTHONHASHSEED"] = str(seed)
|
21 |
-
torch.manual_seed(seed)
|
22 |
-
torch.cuda.manual_seed(seed)
|
23 |
-
torch.cuda.manual_seed_all(seed)
|
24 |
-
torch.backends.cudnn.deterministic = True
|
25 |
-
torch.backends.cudnn.benchmark = False
|
26 |
-
|
27 |
-
|
28 |
-
# helpers
|
29 |
-
|
30 |
-
|
31 |
-
def exists(v):
|
32 |
-
return v is not None
|
33 |
-
|
34 |
-
|
35 |
-
def default(v, d):
|
36 |
-
return v if exists(v) else d
|
37 |
-
|
38 |
-
|
39 |
-
# tensor helpers
|
40 |
-
|
41 |
-
|
42 |
-
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
|
43 |
-
if not exists(length):
|
44 |
-
length = t.amax()
|
45 |
-
|
46 |
-
seq = torch.arange(length, device=t.device)
|
47 |
-
return seq[None, :] < t[:, None]
|
48 |
-
|
49 |
-
|
50 |
-
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
|
51 |
-
max_seq_len = seq_len.max().item()
|
52 |
-
seq = torch.arange(max_seq_len, device=start.device).long()
|
53 |
-
start_mask = seq[None, :] >= start[:, None]
|
54 |
-
end_mask = seq[None, :] < end[:, None]
|
55 |
-
return start_mask & end_mask
|
56 |
-
|
57 |
-
|
58 |
-
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
|
59 |
-
lengths = (frac_lengths * seq_len).long()
|
60 |
-
max_start = seq_len - lengths
|
61 |
-
|
62 |
-
rand = torch.rand_like(frac_lengths)
|
63 |
-
start = (max_start * rand).long().clamp(min=0)
|
64 |
-
end = start + lengths
|
65 |
-
|
66 |
-
return mask_from_start_end_indices(seq_len, start, end)
|
67 |
-
|
68 |
-
|
69 |
-
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
70 |
-
if not exists(mask):
|
71 |
-
return t.mean(dim=1)
|
72 |
-
|
73 |
-
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
|
74 |
-
num = t.sum(dim=1)
|
75 |
-
den = mask.float().sum(dim=1)
|
76 |
-
|
77 |
-
return num / den.clamp(min=1.0)
|
78 |
-
|
79 |
-
|
80 |
-
# simple utf-8 tokenizer, since paper went character based
|
81 |
-
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
82 |
-
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
83 |
-
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
84 |
-
return text
|
85 |
-
|
86 |
-
|
87 |
-
# char tokenizer, based on custom dataset's extracted .txt file
|
88 |
-
def list_str_to_idx(
|
89 |
-
text: list[str] | list[list[str]],
|
90 |
-
vocab_char_map: dict[str, int], # {char: idx}
|
91 |
-
padding_value=-1,
|
92 |
-
) -> int["b nt"]: # noqa: F722
|
93 |
-
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
94 |
-
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
95 |
-
return text
|
96 |
-
|
97 |
-
|
98 |
-
# Get tokenizer
|
99 |
-
|
100 |
-
|
101 |
-
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
102 |
-
"""
|
103 |
-
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
104 |
-
- "char" for char-wise tokenizer, need .txt vocab_file
|
105 |
-
- "byte" for utf-8 tokenizer
|
106 |
-
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
107 |
-
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
108 |
-
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
109 |
-
- if use "byte", set to 256 (unicode byte range)
|
110 |
-
"""
|
111 |
-
if tokenizer in ["pinyin", "char"]:
|
112 |
-
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
113 |
-
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
114 |
-
vocab_char_map = {}
|
115 |
-
for i, char in enumerate(f):
|
116 |
-
vocab_char_map[char[:-1]] = i
|
117 |
-
vocab_size = len(vocab_char_map)
|
118 |
-
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
|
119 |
-
|
120 |
-
elif tokenizer == "byte":
|
121 |
-
vocab_char_map = None
|
122 |
-
vocab_size = 256
|
123 |
-
|
124 |
-
elif tokenizer == "custom":
|
125 |
-
with open(dataset_name, "r", encoding="utf-8") as f:
|
126 |
-
vocab_char_map = {}
|
127 |
-
for i, char in enumerate(f):
|
128 |
-
vocab_char_map[char[:-1]] = i
|
129 |
-
vocab_size = len(vocab_char_map)
|
130 |
-
|
131 |
-
return vocab_char_map, vocab_size
|
132 |
-
|
133 |
-
|
134 |
-
# convert char to pinyin
|
135 |
-
|
136 |
-
|
137 |
-
def convert_char_to_pinyin(text_list, polyphone=True):
|
138 |
-
final_text_list = []
|
139 |
-
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
|
140 |
-
{"“": '"', "”": '"', "‘": "'", "’": "'"}
|
141 |
-
) # in case librispeech (orig no-pc) test-clean
|
142 |
-
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
|
143 |
-
for text in text_list:
|
144 |
-
char_list = []
|
145 |
-
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
|
146 |
-
text = text.translate(custom_trans)
|
147 |
-
for seg in jieba.cut(text):
|
148 |
-
seg_byte_len = len(bytes(seg, "UTF-8"))
|
149 |
-
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
150 |
-
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
151 |
-
char_list.append(" ")
|
152 |
-
char_list.extend(seg)
|
153 |
-
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
|
154 |
-
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
155 |
-
for c in seg:
|
156 |
-
if c not in "。,、;:?!《》【】—…":
|
157 |
-
char_list.append(" ")
|
158 |
-
char_list.append(c)
|
159 |
-
else: # if mixed chinese characters, alphabets and symbols
|
160 |
-
for c in seg:
|
161 |
-
if ord(c) < 256:
|
162 |
-
char_list.extend(c)
|
163 |
-
else:
|
164 |
-
if c not in "。,、;:?!《》【】—…":
|
165 |
-
char_list.append(" ")
|
166 |
-
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
|
167 |
-
else: # if is zh punc
|
168 |
-
char_list.append(c)
|
169 |
-
final_text_list.append(char_list)
|
170 |
-
|
171 |
-
return final_text_list
|
172 |
-
|
173 |
-
|
174 |
-
# filter func for dirty data with many repetitions
|
175 |
-
|
176 |
-
|
177 |
-
def repetition_found(text, length=2, tolerance=10):
|
178 |
-
pattern_count = defaultdict(int)
|
179 |
-
for i in range(len(text) - length + 1):
|
180 |
-
pattern = text[i : i + length]
|
181 |
-
pattern_count[pattern] += 1
|
182 |
-
for pattern, count in pattern_count.items():
|
183 |
-
if count > tolerance:
|
184 |
-
return True
|
185 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|