Upload model_cfm.py
Browse files- model/model_cfm.py +279 -0
model/model_cfm.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Callable
|
12 |
+
from random import random
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from torch.nn.utils.rnn import pad_sequence
|
18 |
+
|
19 |
+
from torchdiffeq import odeint
|
20 |
+
|
21 |
+
from einops import rearrange
|
22 |
+
|
23 |
+
from model.modules import MelSpec
|
24 |
+
|
25 |
+
from model.utils import (
|
26 |
+
default, exists,
|
27 |
+
list_str_to_idx, list_str_to_tensor,
|
28 |
+
lens_to_mask, mask_from_frac_lengths,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class CFM(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
transformer: nn.Module,
|
36 |
+
sigma = 0.,
|
37 |
+
odeint_kwargs: dict = dict(
|
38 |
+
# atol = 1e-5,
|
39 |
+
# rtol = 1e-5,
|
40 |
+
method = 'euler' # 'midpoint'
|
41 |
+
),
|
42 |
+
audio_drop_prob = 0.3,
|
43 |
+
cond_drop_prob = 0.2,
|
44 |
+
num_channels = None,
|
45 |
+
mel_spec_module: nn.Module | None = None,
|
46 |
+
mel_spec_kwargs: dict = dict(),
|
47 |
+
frac_lengths_mask: tuple[float, float] = (0.7, 1.),
|
48 |
+
vocab_char_map: dict[str: int] | None = None
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.frac_lengths_mask = frac_lengths_mask
|
53 |
+
|
54 |
+
# mel spec
|
55 |
+
self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
|
56 |
+
num_channels = default(num_channels, self.mel_spec.n_mel_channels)
|
57 |
+
self.num_channels = num_channels
|
58 |
+
|
59 |
+
# classifier-free guidance
|
60 |
+
self.audio_drop_prob = audio_drop_prob
|
61 |
+
self.cond_drop_prob = cond_drop_prob
|
62 |
+
|
63 |
+
# transformer
|
64 |
+
self.transformer = transformer
|
65 |
+
dim = transformer.dim
|
66 |
+
self.dim = dim
|
67 |
+
|
68 |
+
# conditional flow related
|
69 |
+
self.sigma = sigma
|
70 |
+
|
71 |
+
# sampling related
|
72 |
+
self.odeint_kwargs = odeint_kwargs
|
73 |
+
|
74 |
+
# vocab map for tokenization
|
75 |
+
self.vocab_char_map = vocab_char_map
|
76 |
+
|
77 |
+
@property
|
78 |
+
def device(self):
|
79 |
+
return next(self.parameters()).device
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def sample(
|
83 |
+
self,
|
84 |
+
cond: float['b n d'] | float['b nw'],
|
85 |
+
text: int['b nt'] | list[str],
|
86 |
+
duration: int | int['b'],
|
87 |
+
*,
|
88 |
+
lens: int['b'] | None = None,
|
89 |
+
steps = 32,
|
90 |
+
cfg_strength = 1.,
|
91 |
+
sway_sampling_coef = None,
|
92 |
+
seed: int | None = None,
|
93 |
+
max_duration = 4096,
|
94 |
+
vocoder: Callable[[float['b d n']], float['b nw']] | None = None,
|
95 |
+
no_ref_audio = False,
|
96 |
+
duplicate_test = False,
|
97 |
+
t_inter = 0.1,
|
98 |
+
edit_mask = None,
|
99 |
+
):
|
100 |
+
self.eval()
|
101 |
+
|
102 |
+
# raw wave
|
103 |
+
|
104 |
+
if cond.ndim == 2:
|
105 |
+
cond = self.mel_spec(cond)
|
106 |
+
cond = rearrange(cond, 'b d n -> b n d')
|
107 |
+
assert cond.shape[-1] == self.num_channels
|
108 |
+
|
109 |
+
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
110 |
+
if not exists(lens):
|
111 |
+
lens = torch.full((batch,), cond_seq_len, device = device, dtype = torch.long)
|
112 |
+
|
113 |
+
# text
|
114 |
+
|
115 |
+
if isinstance(text, list):
|
116 |
+
if exists(self.vocab_char_map):
|
117 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
118 |
+
else:
|
119 |
+
text = list_str_to_tensor(text).to(device)
|
120 |
+
assert text.shape[0] == batch
|
121 |
+
|
122 |
+
if exists(text):
|
123 |
+
text_lens = (text != -1).sum(dim = -1)
|
124 |
+
lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
|
125 |
+
|
126 |
+
# duration
|
127 |
+
|
128 |
+
cond_mask = lens_to_mask(lens)
|
129 |
+
if edit_mask is not None:
|
130 |
+
cond_mask = cond_mask & edit_mask
|
131 |
+
|
132 |
+
if isinstance(duration, int):
|
133 |
+
duration = torch.full((batch,), duration, device = device, dtype = torch.long)
|
134 |
+
|
135 |
+
duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
|
136 |
+
duration = duration.clamp(max = max_duration)
|
137 |
+
max_duration = duration.amax()
|
138 |
+
|
139 |
+
# duplicate test corner for inner time step oberservation
|
140 |
+
if duplicate_test:
|
141 |
+
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2*cond_seq_len), value = 0.)
|
142 |
+
|
143 |
+
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value = 0.)
|
144 |
+
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value = False)
|
145 |
+
cond_mask = rearrange(cond_mask, '... -> ... 1')
|
146 |
+
step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) # allow direct control (cut cond audio) with lens passed in
|
147 |
+
|
148 |
+
if batch > 1:
|
149 |
+
mask = lens_to_mask(duration)
|
150 |
+
else: # save memory and speed up, as single inference need no mask currently
|
151 |
+
mask = None
|
152 |
+
|
153 |
+
# test for no ref audio
|
154 |
+
if no_ref_audio:
|
155 |
+
cond = torch.zeros_like(cond)
|
156 |
+
|
157 |
+
# neural ode
|
158 |
+
|
159 |
+
def fn(t, x):
|
160 |
+
# at each step, conditioning is fixed
|
161 |
+
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
162 |
+
|
163 |
+
# predict flow
|
164 |
+
pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = False, drop_text = False)
|
165 |
+
if cfg_strength < 1e-5:
|
166 |
+
return pred
|
167 |
+
|
168 |
+
null_pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = True, drop_text = True)
|
169 |
+
return pred + (pred - null_pred) * cfg_strength
|
170 |
+
|
171 |
+
# noise input
|
172 |
+
# to make sure batch inference result is same with different batch size, and for sure single inference
|
173 |
+
# still some difference maybe due to convolutional layers
|
174 |
+
y0 = []
|
175 |
+
for dur in duration:
|
176 |
+
if exists(seed):
|
177 |
+
torch.manual_seed(seed)
|
178 |
+
y0.append(torch.randn(dur, self.num_channels, device = self.device))
|
179 |
+
y0 = pad_sequence(y0, padding_value = 0, batch_first = True)
|
180 |
+
|
181 |
+
t_start = 0
|
182 |
+
|
183 |
+
# duplicate test corner for inner time step oberservation
|
184 |
+
if duplicate_test:
|
185 |
+
t_start = t_inter
|
186 |
+
y0 = (1 - t_start) * y0 + t_start * test_cond
|
187 |
+
steps = int(steps * (1 - t_start))
|
188 |
+
|
189 |
+
t = torch.linspace(t_start, 1, steps, device = self.device)
|
190 |
+
if sway_sampling_coef is not None:
|
191 |
+
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
192 |
+
|
193 |
+
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
194 |
+
|
195 |
+
sampled = trajectory[-1]
|
196 |
+
out = sampled
|
197 |
+
out = torch.where(cond_mask, cond, out)
|
198 |
+
|
199 |
+
if exists(vocoder):
|
200 |
+
out = rearrange(out, 'b n d -> b d n')
|
201 |
+
out = vocoder(out)
|
202 |
+
|
203 |
+
return out, trajectory
|
204 |
+
|
205 |
+
def forward(
|
206 |
+
self,
|
207 |
+
inp: float['b n d'] | float['b nw'], # mel or raw wave
|
208 |
+
text: int['b nt'] | list[str],
|
209 |
+
*,
|
210 |
+
lens: int['b'] | None = None,
|
211 |
+
noise_scheduler: str | None = None,
|
212 |
+
):
|
213 |
+
# handle raw wave
|
214 |
+
if inp.ndim == 2:
|
215 |
+
inp = self.mel_spec(inp)
|
216 |
+
inp = rearrange(inp, 'b d n -> b n d')
|
217 |
+
assert inp.shape[-1] == self.num_channels
|
218 |
+
|
219 |
+
batch, seq_len, dtype, device, σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
220 |
+
|
221 |
+
# handle text as string
|
222 |
+
if isinstance(text, list):
|
223 |
+
if exists(self.vocab_char_map):
|
224 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
225 |
+
else:
|
226 |
+
text = list_str_to_tensor(text).to(device)
|
227 |
+
assert text.shape[0] == batch
|
228 |
+
|
229 |
+
# lens and mask
|
230 |
+
if not exists(lens):
|
231 |
+
lens = torch.full((batch,), seq_len, device = device)
|
232 |
+
|
233 |
+
mask = lens_to_mask(lens, length = seq_len) # useless here, as collate_fn will pad to max length in batch
|
234 |
+
|
235 |
+
# get a random span to mask out for training conditionally
|
236 |
+
frac_lengths = torch.zeros((batch,), device = self.device).float().uniform_(*self.frac_lengths_mask)
|
237 |
+
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
238 |
+
|
239 |
+
if exists(mask):
|
240 |
+
rand_span_mask &= mask
|
241 |
+
|
242 |
+
# mel is x1
|
243 |
+
x1 = inp
|
244 |
+
|
245 |
+
# x0 is gaussian noise
|
246 |
+
x0 = torch.randn_like(x1)
|
247 |
+
|
248 |
+
# time step
|
249 |
+
time = torch.rand((batch,), dtype = dtype, device = self.device)
|
250 |
+
# TODO. noise_scheduler
|
251 |
+
|
252 |
+
# sample xt (φ_t(x) in the paper)
|
253 |
+
t = rearrange(time, 'b -> b 1 1')
|
254 |
+
φ = (1 - t) * x0 + t * x1
|
255 |
+
flow = x1 - x0
|
256 |
+
|
257 |
+
# only predict what is within the random mask span for infilling
|
258 |
+
cond = torch.where(
|
259 |
+
rand_span_mask[..., None],
|
260 |
+
torch.zeros_like(x1), x1
|
261 |
+
)
|
262 |
+
|
263 |
+
# transformer and cfg training with a drop rate
|
264 |
+
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
|
265 |
+
if random() < self.cond_drop_prob: # p_uncond in voicebox paper
|
266 |
+
drop_audio_cond = True
|
267 |
+
drop_text = True
|
268 |
+
else:
|
269 |
+
drop_text = False
|
270 |
+
|
271 |
+
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
272 |
+
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
273 |
+
pred = self.transformer(x = φ, cond = cond, text = text, time = time, drop_audio_cond = drop_audio_cond, drop_text = drop_text)
|
274 |
+
|
275 |
+
# flow matching loss
|
276 |
+
loss = F.mse_loss(pred, flow, reduction = 'none')
|
277 |
+
loss = loss[rand_span_mask]
|
278 |
+
|
279 |
+
return loss.mean(), cond, pred
|