import streamlit as st import tensorflow as tf from tensorflow import keras import keras_nlp import PyPDF2 import docx2txt import huggingface_hub hf_username = huggingface_hub.whoami()['name'] hf_url = f'hf://{hf_username}/bart_billsum' # Load your Keras model @st.cache_resource def load_model_and_preprocessor(): bart_billsum = keras_nlp.models.BartSeq2SeqLM.from_preset(f'hf://{hf_username}/bart_billsum') # Load the default BART preprocessor (assuming you saved its configuration) #preprocessor = keras_nlp.models.BartSeq2SeqLMPreprocessor.from_preset('bart_base_en', encoder_sequence_length=512, #decoder_sequence_length=128,) return model model = load_model_and_preprocessor() st.title("SummarizeIt") # File uploader uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "docx"]) # Text extraction text = "" if uploaded_file is not None: if uploaded_file.type == "application/pdf": pdf_reader = PyPDF2.PdfReader(uploaded_file) for page in pdf_reader.pages: text += page.extract_text() elif uploaded_file.type == "text/plain": text = uploaded_file.read().decode("utf-8") elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": text = docx2txt.process(uploaded_file) # Text input for direct text entry user_input = st.text_area("Or paste your text here:") text = user_input if user_input else text # Prioritize user input over file def generate_text(model, input_texts, max_length=200, print_time_taken=False): # Convert input_texts to a list if it's a Dataset if isinstance(input_texts, datasets.Dataset): input_texts = input_texts.to_list() chunks = [input_texts[i:i+512] for i in range(0, len(input_texts), 512)] #initialize an empty list to store summaries summaries = [] # generate summaries for each chunk for chunk in chunks: # Assuming your model's generate method can handle a batch of inputs summary = model.generate(input_texts, max_length=max_length) summaries.append(summary) return summary generated_summaries = generate_text( model, text, # Pass the list of documents directly ) st.subheader("Generated Summary:") st.write(summary)