Spaces:
Sleeping
Sleeping
Update game1.py
Browse files
game1.py
CHANGED
@@ -5,6 +5,9 @@ import pandas as pd
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
|
|
|
|
8 |
|
9 |
def read1(lang, num_selected_former):
|
10 |
if lang in ['en']:
|
@@ -107,13 +110,11 @@ def func1(lang_selected, num_selected, human_predict, num1, num2, user_important
|
|
107 |
|
108 |
# (START) off-the-shelf version -- slow at the beginning
|
109 |
# Load model directly
|
110 |
-
|
111 |
-
|
112 |
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
113 |
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
114 |
|
115 |
# Use a pipeline as a high-level helper
|
116 |
-
from transformers import pipeline
|
117 |
|
118 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
119 |
print(device)
|
@@ -272,13 +273,21 @@ def func1(lang_selected, num_selected, human_predict, num1, num2, user_important
|
|
272 |
def interpre1(lang_selected, num_selected):
|
273 |
if lang_selected in ['en']:
|
274 |
fname = 'data1_en.txt'
|
|
|
275 |
else:
|
276 |
fname = 'data1_nl_10.txt'
|
|
|
|
|
277 |
with open(fname) as f:
|
278 |
content = f.readlines()
|
279 |
text = eval(content[int(num_selected*2)])
|
280 |
interpretation = eval(content[int(num_selected*2+1)])
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
282 |
print(interpretation)
|
283 |
|
284 |
res = {"original": text['text'], "interpretation": interpretation}
|
@@ -337,8 +346,6 @@ def func1_written(text_written, human_predict, lang_written):
|
|
337 |
'''
|
338 |
|
339 |
# (START) off-the-shelf version
|
340 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
341 |
-
from transformers import pipeline
|
342 |
|
343 |
|
344 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
@@ -373,9 +380,6 @@ def func1_written(text_written, human_predict, lang_written):
|
|
373 |
ai_predict += int(random.randint(-1, 1))
|
374 |
chatbot.append(("AI thinks in a different way from human. 😉", "⬅️ Feel free to try another one! ⬅️"))
|
375 |
|
376 |
-
|
377 |
-
import shap
|
378 |
-
|
379 |
# sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
380 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
381 |
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
9 |
+
from transformers import pipeline
|
10 |
+
import shap
|
11 |
|
12 |
def read1(lang, num_selected_former):
|
13 |
if lang in ['en']:
|
|
|
110 |
|
111 |
# (START) off-the-shelf version -- slow at the beginning
|
112 |
# Load model directly
|
113 |
+
|
|
|
114 |
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
115 |
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
116 |
|
117 |
# Use a pipeline as a high-level helper
|
|
|
118 |
|
119 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
120 |
print(device)
|
|
|
273 |
def interpre1(lang_selected, num_selected):
|
274 |
if lang_selected in ['en']:
|
275 |
fname = 'data1_en.txt'
|
276 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
277 |
else:
|
278 |
fname = 'data1_nl_10.txt'
|
279 |
+
tokenizer = AutoTokenizer.from_pretrained("DTAI-KULeuven/robbert-v2-dutch-sentiment")
|
280 |
+
|
281 |
with open(fname) as f:
|
282 |
content = f.readlines()
|
283 |
text = eval(content[int(num_selected*2)])
|
284 |
interpretation = eval(content[int(num_selected*2+1)])
|
285 |
+
|
286 |
+
encodings = tokenizer(text['text'], is_pretokenized=False, return_offsets_mapping=True)
|
287 |
+
print(encodings['offset_mapping'])
|
288 |
+
is_subword = np.array(encodings['offset_mapping'])[:,0] != 0
|
289 |
+
print(is_subword)
|
290 |
+
print(abc)
|
291 |
print(interpretation)
|
292 |
|
293 |
res = {"original": text['text'], "interpretation": interpretation}
|
|
|
346 |
'''
|
347 |
|
348 |
# (START) off-the-shelf version
|
|
|
|
|
349 |
|
350 |
|
351 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
|
|
380 |
ai_predict += int(random.randint(-1, 1))
|
381 |
chatbot.append(("AI thinks in a different way from human. 😉", "⬅️ Feel free to try another one! ⬅️"))
|
382 |
|
|
|
|
|
|
|
383 |
# sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
384 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
385 |
|