File size: 13,636 Bytes
e1f2481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import time # to simulate a real time data, time loop
from os import listdir
from os.path import isfile, join
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
import plotly.express as px # interactive charts
from plotly import graph_objs as go
import streamlit as st # 🎈 data web app development
import plotly.figure_factory as ff
import numpy as np
from collections import Counter
print("Make sure to activate your VPN before running this script")
st.set_page_config(
page_title="GroqFlow Progress Tracker",
page_icon="🚀",
layout="wide",
)
# Session State variables:
state = st.session_state
if "INFO_CLOSED" not in state:
state.INFO_CLOSED = False
# dashboard title
st.title("GroqFlow Progress Tracker 🚀")
# Custom chart colors (https://plotly.com/python/discrete-color/)
colorway = ["#3366cc", "#FF7F0E"]
def add_filter(data_frame_list, name, label, options, num_cols=1):
st.markdown(f"#### {name}")
cols = st.columns(num_cols)
instantiated_checkbox = []
for idx in range(len(options)):
with cols[idx % num_cols]:
instantiated_checkbox.append(st.checkbox(options[idx], False))
all_options = set(data_frame_list[-1][label])
selected_options = [
options[idx] for idx, checked in enumerate(instantiated_checkbox) if checked
]
# The last checkbox will always correspond to "other"
if instantiated_checkbox[-1]:
selected_options = selected_options[:-1]
other_options = [x for x in all_options if x not in options]
selected_options = set(selected_options + other_options)
if len(selected_options) > 0:
for idx in range(len(data_frame_list)):
data_frame_list[idx] = data_frame_list[idx][
[
any([x == model_entry for x in selected_options])
for model_entry in data_frame_list[idx][label]
]
]
return data_frame_list
with st.sidebar:
st.markdown("# Filters")
test_type = st.radio(
"Test Type",
("Daily Tests (100 models)", "Monthly Tests (500+ models)"),
)
if test_type == "Daily Tests (100 models)":
selected_test_type = "daily"
report_folder = "reports/daily"
else:
selected_test_type = "monthly"
report_folder = "reports/monthly"
# Get ML Agility reports
reports = sorted(
[f for f in listdir(report_folder) if isfile(join(report_folder, f))]
)
selected_report = st.selectbox("Test date", reports, index=len(reports) - 1)
selected_report_idx = reports.index(selected_report)
prev_report = reports[max(0, selected_report_idx - 1)]
mla_report = pd.read_csv(f"{report_folder}/{selected_report}")
prev_mla_report = pd.read_csv(f"{report_folder}/{prev_report}")
# Add chips filter
num_chips_options = ["1", "2", "4", "8", "16", "32+"]
mla_report = mla_report.astype({"chips_used": str})
prev_mla_report = prev_mla_report.astype({"chips_used": str})
mla_report, prev_mla_report = add_filter(
[mla_report, prev_mla_report],
"Number of GroqChips™",
label="chips_used",
options=num_chips_options,
num_cols=3,
)
# Add author filter
authors = [
"google",
"apple",
"facebook",
"openai",
"microsoft",
"huggingface",
"CompVis",
"others",
]
mla_report, prev_mla_report = add_filter(
[mla_report, prev_mla_report],
"Authors",
label="author",
options=authors,
num_cols=2,
)
# Add task filter
tasks = [
"Image Classification",
"Translation",
"Image Segmentation",
"Fill-Mask",
"Text-to-Image",
"Token Classification",
"Sentence Similarity",
"Audio Classification",
"Question Answering",
"Summarization",
"other",
]
mla_report, prev_mla_report = add_filter(
[mla_report, prev_mla_report], "Tasks", label="task", options=tasks
)
def detailed_progress_list(df_new, df_old, filter=None):
return
"""
if filter is not None:
df_new = df_new[(df_new[filter] == True)]
df_old = df_old[(df_old[filter] == True)]
progress = df_new[~(df_new["hash"].isin(df_old["hash"]))].reset_index(drop=True)
regression = df_old[~(df_old["hash"].isin(df_new["hash"]))].reset_index(drop=True)
for model_name in progress["model_name"]:
st.markdown(
f'<span style="color:green">↑ {model_name}</span>',
unsafe_allow_html=True,
)
for model_name in regression["model_name"]:
st.markdown(
f'<span style="color:red">↓ {model_name}</span>',
unsafe_allow_html=True,
)
"""
# creating a single-element container
placeholder = st.empty()
with placeholder.container():
st.markdown("## Summary Results")
# create three columns
kpi = st.columns(7)
model_details = st.columns(7)
# fill in those three columns with respective metrics or KPIs
kpi[0].metric(
label="All models",
value=len(mla_report),
delta=len(mla_report) - len(prev_mla_report),
)
if selected_test_type == "daily":
with model_details[0]:
detailed_progress_list(mla_report, prev_mla_report)
kpi[1].metric(
label="Convert to ONNX",
value=np.sum(mla_report["base_onnx"]),
delta=int(
np.sum(mla_report["base_onnx"]) - np.sum(prev_mla_report["base_onnx"])
),
)
if selected_test_type == "daily":
with model_details[1]:
detailed_progress_list(mla_report, prev_mla_report, "base_onnx")
kpi[2].metric(
label="Optimize ONNX file",
value=np.sum(mla_report["optimized_onnx"]),
delta=int(
np.sum(mla_report["optimized_onnx"])
- np.sum(prev_mla_report["optimized_onnx"])
),
)
if selected_test_type == "daily":
with model_details[2]:
detailed_progress_list(mla_report, prev_mla_report, "optimized_onnx")
kpi[3].metric(
label="All ops supported",
value=np.sum(mla_report["all_ops_supported"]),
delta=int(
np.sum(mla_report["all_ops_supported"])
- np.sum(prev_mla_report["all_ops_supported"])
),
)
if selected_test_type == "daily":
with model_details[3]:
detailed_progress_list(mla_report, prev_mla_report, "all_ops_supported")
kpi[4].metric(
label="Converts to FP16",
value=np.sum(mla_report["fp16_onnx"]),
delta=int(
np.sum(mla_report["fp16_onnx"]) - np.sum(prev_mla_report["fp16_onnx"])
),
)
if selected_test_type == "daily":
with model_details[4]:
detailed_progress_list(mla_report, prev_mla_report, "fp16_onnx")
kpi[5].metric(
label="Compiles",
value=np.sum(mla_report["compiles"]),
delta=int(np.sum(mla_report["compiles"]) - np.sum(prev_mla_report["compiles"])),
)
if selected_test_type == "daily":
with model_details[5]:
detailed_progress_list(mla_report, prev_mla_report, "compiles")
kpi[6].metric(
label="Assembles",
value=np.sum(mla_report["assembles"]),
delta=int(
np.sum(mla_report["assembles"]) - np.sum(prev_mla_report["assembles"])
),
)
if selected_test_type == "daily":
with model_details[6]:
detailed_progress_list(mla_report, prev_mla_report, "assembles")
cols = st.columns(2)
with cols[0]:
compiler_errors = mla_report[mla_report["compiler_error"] != "-"][
"compiler_error"
]
compiler_errors = Counter(compiler_errors)
st.markdown("""#### Top compiler issues""")
if len(compiler_errors) > 0:
compiler_errors = pd.DataFrame.from_dict(
compiler_errors, orient="index"
).reset_index()
compiler_errors = compiler_errors.set_axis(
["error", "count"], axis=1, inplace=False
)
fig = px.bar(
compiler_errors, x="count", y="error", orientation="h", height=400
)
st.plotly_chart(fig, use_container_width=True)
else:
st.markdown("""No compiler errors found :tada:""")
with cols[1]:
# Add parameters histogram
all_models = [float(x) / 1000000 for x in mla_report["params"] if x != "-"]
assembled_models = mla_report[mla_report["assembles"] == True]
assembled_models = [
float(x) / 1000000 for x in assembled_models["params"] if x != "-"
]
hist_data = []
group_labels = []
if all_models != []:
hist_data.append(all_models)
group_labels.append("Models we tried compiling")
if assembled_models != []:
hist_data.append(assembled_models)
group_labels.append("Assembled models")
st.markdown("""#### Assembled models vs. Parameters (in millions)""")
if len(assembled_models) > 1:
fig = ff.create_distplot(
hist_data,
group_labels,
bin_size=[25, 25],
histnorm="",
)
# fig.layout.update(title="Assembled models vs. Parameters (in millions)")
fig.layout.update(xaxis_title="Parameters in millions")
fig.layout.update(yaxis_title="count")
fig.update_xaxes(range=[1, 1000])
st.plotly_chart(fig, use_container_width=True)
else:
st.markdown("""Need at least one assembled model to show this graph 😅""")
if "tsp_gpu_compute_ratio" in mla_report and "tsp_gpu_e2e_ratio" in mla_report:
cols = st.columns(2)
with cols[0]:
# GPU Acceleration plot
st.markdown("""#### Speedup of GroqChip™ compared to A100 GPUs""")
# Prepare data
df = mla_report[
["model_name", "tsp_gpu_compute_ratio", "tsp_gpu_e2e_ratio"]
]
df = df.sort_values(by=["model_name"])
df = df[(df.tsp_gpu_compute_ratio != "-")]
df = df[(df.tsp_gpu_e2e_ratio != "-")]
df["tsp_gpu_compute_ratio"] = df["tsp_gpu_compute_ratio"].astype(float)
df["tsp_gpu_e2e_ratio"] = df["tsp_gpu_e2e_ratio"].astype(float)
data = [
go.Bar(
x=df["model_name"],
y=df["tsp_gpu_compute_ratio"],
name="Compute only",
),
go.Bar(
x=df["model_name"],
y=df["tsp_gpu_e2e_ratio"],
name="Compute + estimated I/O",
),
]
layout = go.Layout(
barmode="overlay",
yaxis_title="Speedup compared to A100 GPU",
colorway=colorway,
)
fig = dict(data=data, layout=layout)
st.plotly_chart(fig, use_container_width=True)
st.markdown(
"<sup>*</sup>Estimated I/O does NOT include delays caused by Groq's runtime.",
unsafe_allow_html=True,
)
with cols[1]:
# Show stats
st.markdown(
f"""<br><br><br><br><br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute only:</p>
<p style="font-family:sans-serif; color:#3366cc; font-size: 26px;text-align: center;"> {round(df["tsp_gpu_compute_ratio"].mean(),2)}x</p>
<p style="font-family:sans-serif; color:#3366cc; font-size: 20px;text-align: center;"> min {round(df["tsp_gpu_compute_ratio"].min(),2)}x; max {round(df["tsp_gpu_compute_ratio"].max(),2)}x</p>
<br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute + estimated I/O<sup>*</sup>:</p>
<p style="font-family:sans-serif; color:#FF7F0E; font-size: 26px;text-align: center;"> {round(df["tsp_gpu_e2e_ratio"].mean(),2)}x</p>
<p style="font-family:sans-serif; color:#FF7F0E; font-size: 20px;text-align: center;"> min {round(df["tsp_gpu_e2e_ratio"].min(),2)}x; max {round(df["tsp_gpu_e2e_ratio"].max(),2)}x</p>""",
unsafe_allow_html=True,
)
st.markdown("### Detailed Data View")
st.markdown(
"**Model selection**: All workloads were obtained from models cards available at huggingface.co/models. Input shapes corresponds exactly to those used by the Huggingface model cards. Some of those input shapes might be small, causing the compilation process to be easier than when reasonably-sized input shapes are used.",
unsafe_allow_html=True,
)
model_name = st.text_input("", placeholder="Filter model by name")
if model_name != "":
mla_report = mla_report[[model_name in x for x in mla_report["model_name"]]]
# Select which columns to show
selected_cols = list(mla_report.columns)
# remove_cols = (
# "tsp_e2e_latency",
# "gpu_e2e_latency",
# "tsp_gpu_e2e_ratio",
# )
# for item in remove_cols:
# if item in selected_cols:
# selected_cols.remove(item)
st.dataframe(
mla_report[selected_cols], height=min((len(mla_report) + 1) * 35, 35 * 21)
)
|