File size: 13,636 Bytes
e1f2481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import time  # to simulate a real time data, time loop
from os import listdir
from os.path import isfile, join
import numpy as np  # np mean, np random
import pandas as pd  # read csv, df manipulation
import plotly.express as px  # interactive charts
from plotly import graph_objs as go
import streamlit as st  # 🎈 data web app development
import plotly.figure_factory as ff
import numpy as np
from collections import Counter


print("Make sure to activate your VPN before running this script")

st.set_page_config(
    page_title="GroqFlow Progress Tracker",
    page_icon="🚀",
    layout="wide",
)


# Session State variables:
state = st.session_state
if "INFO_CLOSED" not in state:
    state.INFO_CLOSED = False

# dashboard title
st.title("GroqFlow Progress Tracker 🚀")

# Custom chart colors (https://plotly.com/python/discrete-color/)
colorway = ["#3366cc", "#FF7F0E"]


def add_filter(data_frame_list, name, label, options, num_cols=1):
    st.markdown(f"#### {name}")

    cols = st.columns(num_cols)
    instantiated_checkbox = []
    for idx in range(len(options)):
        with cols[idx % num_cols]:
            instantiated_checkbox.append(st.checkbox(options[idx], False))

    all_options = set(data_frame_list[-1][label])
    selected_options = [
        options[idx] for idx, checked in enumerate(instantiated_checkbox) if checked
    ]

    # The last checkbox will always correspond to "other"
    if instantiated_checkbox[-1]:
        selected_options = selected_options[:-1]
        other_options = [x for x in all_options if x not in options]
        selected_options = set(selected_options + other_options)

    if len(selected_options) > 0:
        for idx in range(len(data_frame_list)):
            data_frame_list[idx] = data_frame_list[idx][
                [
                    any([x == model_entry for x in selected_options])
                    for model_entry in data_frame_list[idx][label]
                ]
            ]
    return data_frame_list


with st.sidebar:

    st.markdown("# Filters")

    test_type = st.radio(
        "Test Type",
        ("Daily Tests (100 models)", "Monthly Tests (500+ models)"),
    )
    if test_type == "Daily Tests (100 models)":
        selected_test_type = "daily"
        report_folder = "reports/daily"
    else:
        selected_test_type = "monthly"
        report_folder = "reports/monthly"

    # Get ML Agility reports
    reports = sorted(
        [f for f in listdir(report_folder) if isfile(join(report_folder, f))]
    )

    selected_report = st.selectbox("Test date", reports, index=len(reports) - 1)
    selected_report_idx = reports.index(selected_report)
    prev_report = reports[max(0, selected_report_idx - 1)]
    mla_report = pd.read_csv(f"{report_folder}/{selected_report}")
    prev_mla_report = pd.read_csv(f"{report_folder}/{prev_report}")

    # Add chips filter
    num_chips_options = ["1", "2", "4", "8", "16", "32+"]
    mla_report = mla_report.astype({"chips_used": str})
    prev_mla_report = prev_mla_report.astype({"chips_used": str})
    mla_report, prev_mla_report = add_filter(
        [mla_report, prev_mla_report],
        "Number of GroqChips™",
        label="chips_used",
        options=num_chips_options,
        num_cols=3,
    )

    # Add author filter
    authors = [
        "google",
        "apple",
        "facebook",
        "openai",
        "microsoft",
        "huggingface",
        "CompVis",
        "others",
    ]
    mla_report, prev_mla_report = add_filter(
        [mla_report, prev_mla_report],
        "Authors",
        label="author",
        options=authors,
        num_cols=2,
    )

    # Add task filter
    tasks = [
        "Image Classification",
        "Translation",
        "Image Segmentation",
        "Fill-Mask",
        "Text-to-Image",
        "Token Classification",
        "Sentence Similarity",
        "Audio Classification",
        "Question Answering",
        "Summarization",
        "other",
    ]
    mla_report, prev_mla_report = add_filter(
        [mla_report, prev_mla_report], "Tasks", label="task", options=tasks
    )


def detailed_progress_list(df_new, df_old, filter=None):
    return
    """
    if filter is not None:
        df_new = df_new[(df_new[filter] == True)]
        df_old = df_old[(df_old[filter] == True)]

    progress = df_new[~(df_new["hash"].isin(df_old["hash"]))].reset_index(drop=True)
    regression = df_old[~(df_old["hash"].isin(df_new["hash"]))].reset_index(drop=True)

    for model_name in progress["model_name"]:
        st.markdown(
            f'<span style="color:green">↑ {model_name}</span>',
            unsafe_allow_html=True,
        )
    for model_name in regression["model_name"]:
        st.markdown(
            f'<span style="color:red">↓ {model_name}</span>',
            unsafe_allow_html=True,
        )
    """


# creating a single-element container
placeholder = st.empty()

with placeholder.container():

    st.markdown("## Summary Results")
    # create three columns
    kpi = st.columns(7)
    model_details = st.columns(7)

    # fill in those three columns with respective metrics or KPIs
    kpi[0].metric(
        label="All models",
        value=len(mla_report),
        delta=len(mla_report) - len(prev_mla_report),
    )
    if selected_test_type == "daily":
        with model_details[0]:
            detailed_progress_list(mla_report, prev_mla_report)

    kpi[1].metric(
        label="Convert to ONNX",
        value=np.sum(mla_report["base_onnx"]),
        delta=int(
            np.sum(mla_report["base_onnx"]) - np.sum(prev_mla_report["base_onnx"])
        ),
    )
    if selected_test_type == "daily":
        with model_details[1]:
            detailed_progress_list(mla_report, prev_mla_report, "base_onnx")

    kpi[2].metric(
        label="Optimize ONNX file",
        value=np.sum(mla_report["optimized_onnx"]),
        delta=int(
            np.sum(mla_report["optimized_onnx"])
            - np.sum(prev_mla_report["optimized_onnx"])
        ),
    )
    if selected_test_type == "daily":
        with model_details[2]:
            detailed_progress_list(mla_report, prev_mla_report, "optimized_onnx")

    kpi[3].metric(
        label="All ops supported",
        value=np.sum(mla_report["all_ops_supported"]),
        delta=int(
            np.sum(mla_report["all_ops_supported"])
            - np.sum(prev_mla_report["all_ops_supported"])
        ),
    )
    if selected_test_type == "daily":
        with model_details[3]:
            detailed_progress_list(mla_report, prev_mla_report, "all_ops_supported")

    kpi[4].metric(
        label="Converts to FP16",
        value=np.sum(mla_report["fp16_onnx"]),
        delta=int(
            np.sum(mla_report["fp16_onnx"]) - np.sum(prev_mla_report["fp16_onnx"])
        ),
    )
    if selected_test_type == "daily":
        with model_details[4]:
            detailed_progress_list(mla_report, prev_mla_report, "fp16_onnx")

    kpi[5].metric(
        label="Compiles",
        value=np.sum(mla_report["compiles"]),
        delta=int(np.sum(mla_report["compiles"]) - np.sum(prev_mla_report["compiles"])),
    )
    if selected_test_type == "daily":
        with model_details[5]:
            detailed_progress_list(mla_report, prev_mla_report, "compiles")

    kpi[6].metric(
        label="Assembles",
        value=np.sum(mla_report["assembles"]),
        delta=int(
            np.sum(mla_report["assembles"]) - np.sum(prev_mla_report["assembles"])
        ),
    )
    if selected_test_type == "daily":
        with model_details[6]:
            detailed_progress_list(mla_report, prev_mla_report, "assembles")

    cols = st.columns(2)
    with cols[0]:

        compiler_errors = mla_report[mla_report["compiler_error"] != "-"][
            "compiler_error"
        ]
        compiler_errors = Counter(compiler_errors)
        st.markdown("""#### Top compiler issues""")
        if len(compiler_errors) > 0:
            compiler_errors = pd.DataFrame.from_dict(
                compiler_errors, orient="index"
            ).reset_index()
            compiler_errors = compiler_errors.set_axis(
                ["error", "count"], axis=1, inplace=False
            )

            fig = px.bar(
                compiler_errors, x="count", y="error", orientation="h", height=400
            )
            st.plotly_chart(fig, use_container_width=True)
        else:
            st.markdown("""No compiler errors found :tada:""")

    with cols[1]:
        # Add parameters histogram
        all_models = [float(x) / 1000000 for x in mla_report["params"] if x != "-"]

        assembled_models = mla_report[mla_report["assembles"] == True]
        assembled_models = [
            float(x) / 1000000 for x in assembled_models["params"] if x != "-"
        ]
        hist_data = []
        group_labels = []
        if all_models != []:
            hist_data.append(all_models)
            group_labels.append("Models we tried compiling")

        if assembled_models != []:
            hist_data.append(assembled_models)
            group_labels.append("Assembled models")

        st.markdown("""#### Assembled models vs. Parameters (in millions)""")

        if len(assembled_models) > 1:

            fig = ff.create_distplot(
                hist_data,
                group_labels,
                bin_size=[25, 25],
                histnorm="",
            )
            # fig.layout.update(title="Assembled models vs. Parameters (in millions)")
            fig.layout.update(xaxis_title="Parameters in millions")
            fig.layout.update(yaxis_title="count")
            fig.update_xaxes(range=[1, 1000])
            st.plotly_chart(fig, use_container_width=True)
        else:
            st.markdown("""Need at least one assembled model to show this graph 😅""")

    if "tsp_gpu_compute_ratio" in mla_report and "tsp_gpu_e2e_ratio" in mla_report:
        cols = st.columns(2)
        with cols[0]:
            # GPU Acceleration plot
            st.markdown("""#### Speedup of GroqChip™ compared to A100 GPUs""")

            # Prepare data
            df = mla_report[
                ["model_name", "tsp_gpu_compute_ratio", "tsp_gpu_e2e_ratio"]
            ]
            df = df.sort_values(by=["model_name"])
            df = df[(df.tsp_gpu_compute_ratio != "-")]
            df = df[(df.tsp_gpu_e2e_ratio != "-")]
            df["tsp_gpu_compute_ratio"] = df["tsp_gpu_compute_ratio"].astype(float)
            df["tsp_gpu_e2e_ratio"] = df["tsp_gpu_e2e_ratio"].astype(float)

            data = [
                go.Bar(
                    x=df["model_name"],
                    y=df["tsp_gpu_compute_ratio"],
                    name="Compute only",
                ),
                go.Bar(
                    x=df["model_name"],
                    y=df["tsp_gpu_e2e_ratio"],
                    name="Compute + estimated I/O",
                ),
            ]

            layout = go.Layout(
                barmode="overlay",
                yaxis_title="Speedup compared to A100 GPU",
                colorway=colorway,
            )

            fig = dict(data=data, layout=layout)
            st.plotly_chart(fig, use_container_width=True)

            st.markdown(
                "<sup>*</sup>Estimated I/O does NOT include delays caused by Groq's runtime.",
                unsafe_allow_html=True,
            )

        with cols[1]:
            # Show stats
            st.markdown(
                f"""<br><br><br><br><br><br>
                <p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute only:</p>
                <p style="font-family:sans-serif; color:#3366cc; font-size: 26px;text-align: center;"> {round(df["tsp_gpu_compute_ratio"].mean(),2)}x</p>
                <p style="font-family:sans-serif; color:#3366cc; font-size: 20px;text-align: center;"> min {round(df["tsp_gpu_compute_ratio"].min(),2)}x; max {round(df["tsp_gpu_compute_ratio"].max(),2)}x</p>
                <br><br>
                <p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute + estimated I/O<sup>*</sup>:</p>
                <p style="font-family:sans-serif; color:#FF7F0E; font-size: 26px;text-align: center;"> {round(df["tsp_gpu_e2e_ratio"].mean(),2)}x</p>
                <p style="font-family:sans-serif; color:#FF7F0E; font-size: 20px;text-align: center;"> min {round(df["tsp_gpu_e2e_ratio"].min(),2)}x; max {round(df["tsp_gpu_e2e_ratio"].max(),2)}x</p>""",
                unsafe_allow_html=True,
            )

    st.markdown("### Detailed Data View")
    st.markdown(
        "**Model selection**: All workloads were obtained from models cards available at huggingface.co/models. Input shapes corresponds exactly to those used by the Huggingface model cards. Some of those input shapes might be small, causing the compilation process to be easier than when reasonably-sized input shapes are used.",
        unsafe_allow_html=True,
    )
    model_name = st.text_input("", placeholder="Filter model by name")
    if model_name != "":
        mla_report = mla_report[[model_name in x for x in mla_report["model_name"]]]

    # Select which columns to show
    selected_cols = list(mla_report.columns)
    # remove_cols = (
    #    "tsp_e2e_latency",
    #    "gpu_e2e_latency",
    #    "tsp_gpu_e2e_ratio",
    # )
    # for item in remove_cols:
    #    if item in selected_cols:
    #        selected_cols.remove(item)
    st.dataframe(
        mla_report[selected_cols], height=min((len(mla_report) + 1) * 35, 35 * 21)
    )