Initial test
Browse files- .streamlit/config.toml +2 -0
- app.py +388 -0
- reports/daily/2023-01-01.csv +112 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
base="dark"
|
app.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time # to simulate a real time data, time loop
|
2 |
+
from os import listdir
|
3 |
+
from os.path import isfile, join
|
4 |
+
import numpy as np # np mean, np random
|
5 |
+
import pandas as pd # read csv, df manipulation
|
6 |
+
import plotly.express as px # interactive charts
|
7 |
+
from plotly import graph_objs as go
|
8 |
+
import streamlit as st # 🎈 data web app development
|
9 |
+
import plotly.figure_factory as ff
|
10 |
+
import numpy as np
|
11 |
+
from collections import Counter
|
12 |
+
|
13 |
+
|
14 |
+
print("Make sure to activate your VPN before running this script")
|
15 |
+
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="GroqFlow Progress Tracker",
|
18 |
+
page_icon="🚀",
|
19 |
+
layout="wide",
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
# Session State variables:
|
24 |
+
state = st.session_state
|
25 |
+
if "INFO_CLOSED" not in state:
|
26 |
+
state.INFO_CLOSED = False
|
27 |
+
|
28 |
+
# dashboard title
|
29 |
+
st.title("GroqFlow Progress Tracker 🚀")
|
30 |
+
|
31 |
+
# Custom chart colors (https://plotly.com/python/discrete-color/)
|
32 |
+
colorway = ["#3366cc", "#FF7F0E"]
|
33 |
+
|
34 |
+
|
35 |
+
def add_filter(data_frame_list, name, label, options, num_cols=1):
|
36 |
+
st.markdown(f"#### {name}")
|
37 |
+
|
38 |
+
cols = st.columns(num_cols)
|
39 |
+
instantiated_checkbox = []
|
40 |
+
for idx in range(len(options)):
|
41 |
+
with cols[idx % num_cols]:
|
42 |
+
instantiated_checkbox.append(st.checkbox(options[idx], False))
|
43 |
+
|
44 |
+
all_options = set(data_frame_list[-1][label])
|
45 |
+
selected_options = [
|
46 |
+
options[idx] for idx, checked in enumerate(instantiated_checkbox) if checked
|
47 |
+
]
|
48 |
+
|
49 |
+
# The last checkbox will always correspond to "other"
|
50 |
+
if instantiated_checkbox[-1]:
|
51 |
+
selected_options = selected_options[:-1]
|
52 |
+
other_options = [x for x in all_options if x not in options]
|
53 |
+
selected_options = set(selected_options + other_options)
|
54 |
+
|
55 |
+
if len(selected_options) > 0:
|
56 |
+
for idx in range(len(data_frame_list)):
|
57 |
+
data_frame_list[idx] = data_frame_list[idx][
|
58 |
+
[
|
59 |
+
any([x == model_entry for x in selected_options])
|
60 |
+
for model_entry in data_frame_list[idx][label]
|
61 |
+
]
|
62 |
+
]
|
63 |
+
return data_frame_list
|
64 |
+
|
65 |
+
|
66 |
+
with st.sidebar:
|
67 |
+
|
68 |
+
st.markdown("# Filters")
|
69 |
+
|
70 |
+
test_type = st.radio(
|
71 |
+
"Test Type",
|
72 |
+
("Daily Tests (100 models)", "Monthly Tests (500+ models)"),
|
73 |
+
)
|
74 |
+
if test_type == "Daily Tests (100 models)":
|
75 |
+
selected_test_type = "daily"
|
76 |
+
report_folder = "reports/daily"
|
77 |
+
else:
|
78 |
+
selected_test_type = "monthly"
|
79 |
+
report_folder = "reports/monthly"
|
80 |
+
|
81 |
+
# Get ML Agility reports
|
82 |
+
reports = sorted(
|
83 |
+
[f for f in listdir(report_folder) if isfile(join(report_folder, f))]
|
84 |
+
)
|
85 |
+
|
86 |
+
selected_report = st.selectbox("Test date", reports, index=len(reports) - 1)
|
87 |
+
selected_report_idx = reports.index(selected_report)
|
88 |
+
prev_report = reports[max(0, selected_report_idx - 1)]
|
89 |
+
mla_report = pd.read_csv(f"{report_folder}/{selected_report}")
|
90 |
+
prev_mla_report = pd.read_csv(f"{report_folder}/{prev_report}")
|
91 |
+
|
92 |
+
# Add chips filter
|
93 |
+
num_chips_options = ["1", "2", "4", "8", "16", "32+"]
|
94 |
+
mla_report = mla_report.astype({"chips_used": str})
|
95 |
+
prev_mla_report = prev_mla_report.astype({"chips_used": str})
|
96 |
+
mla_report, prev_mla_report = add_filter(
|
97 |
+
[mla_report, prev_mla_report],
|
98 |
+
"Number of GroqChips™",
|
99 |
+
label="chips_used",
|
100 |
+
options=num_chips_options,
|
101 |
+
num_cols=3,
|
102 |
+
)
|
103 |
+
|
104 |
+
# Add author filter
|
105 |
+
authors = [
|
106 |
+
"google",
|
107 |
+
"apple",
|
108 |
+
"facebook",
|
109 |
+
"openai",
|
110 |
+
"microsoft",
|
111 |
+
"huggingface",
|
112 |
+
"CompVis",
|
113 |
+
"others",
|
114 |
+
]
|
115 |
+
mla_report, prev_mla_report = add_filter(
|
116 |
+
[mla_report, prev_mla_report],
|
117 |
+
"Authors",
|
118 |
+
label="author",
|
119 |
+
options=authors,
|
120 |
+
num_cols=2,
|
121 |
+
)
|
122 |
+
|
123 |
+
# Add task filter
|
124 |
+
tasks = [
|
125 |
+
"Image Classification",
|
126 |
+
"Translation",
|
127 |
+
"Image Segmentation",
|
128 |
+
"Fill-Mask",
|
129 |
+
"Text-to-Image",
|
130 |
+
"Token Classification",
|
131 |
+
"Sentence Similarity",
|
132 |
+
"Audio Classification",
|
133 |
+
"Question Answering",
|
134 |
+
"Summarization",
|
135 |
+
"other",
|
136 |
+
]
|
137 |
+
mla_report, prev_mla_report = add_filter(
|
138 |
+
[mla_report, prev_mla_report], "Tasks", label="task", options=tasks
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
def detailed_progress_list(df_new, df_old, filter=None):
|
143 |
+
return
|
144 |
+
"""
|
145 |
+
if filter is not None:
|
146 |
+
df_new = df_new[(df_new[filter] == True)]
|
147 |
+
df_old = df_old[(df_old[filter] == True)]
|
148 |
+
|
149 |
+
progress = df_new[~(df_new["hash"].isin(df_old["hash"]))].reset_index(drop=True)
|
150 |
+
regression = df_old[~(df_old["hash"].isin(df_new["hash"]))].reset_index(drop=True)
|
151 |
+
|
152 |
+
for model_name in progress["model_name"]:
|
153 |
+
st.markdown(
|
154 |
+
f'<span style="color:green">↑ {model_name}</span>',
|
155 |
+
unsafe_allow_html=True,
|
156 |
+
)
|
157 |
+
for model_name in regression["model_name"]:
|
158 |
+
st.markdown(
|
159 |
+
f'<span style="color:red">↓ {model_name}</span>',
|
160 |
+
unsafe_allow_html=True,
|
161 |
+
)
|
162 |
+
"""
|
163 |
+
|
164 |
+
|
165 |
+
# creating a single-element container
|
166 |
+
placeholder = st.empty()
|
167 |
+
|
168 |
+
with placeholder.container():
|
169 |
+
|
170 |
+
st.markdown("## Summary Results")
|
171 |
+
# create three columns
|
172 |
+
kpi = st.columns(7)
|
173 |
+
model_details = st.columns(7)
|
174 |
+
|
175 |
+
# fill in those three columns with respective metrics or KPIs
|
176 |
+
kpi[0].metric(
|
177 |
+
label="All models",
|
178 |
+
value=len(mla_report),
|
179 |
+
delta=len(mla_report) - len(prev_mla_report),
|
180 |
+
)
|
181 |
+
if selected_test_type == "daily":
|
182 |
+
with model_details[0]:
|
183 |
+
detailed_progress_list(mla_report, prev_mla_report)
|
184 |
+
|
185 |
+
kpi[1].metric(
|
186 |
+
label="Convert to ONNX",
|
187 |
+
value=np.sum(mla_report["base_onnx"]),
|
188 |
+
delta=int(
|
189 |
+
np.sum(mla_report["base_onnx"]) - np.sum(prev_mla_report["base_onnx"])
|
190 |
+
),
|
191 |
+
)
|
192 |
+
if selected_test_type == "daily":
|
193 |
+
with model_details[1]:
|
194 |
+
detailed_progress_list(mla_report, prev_mla_report, "base_onnx")
|
195 |
+
|
196 |
+
kpi[2].metric(
|
197 |
+
label="Optimize ONNX file",
|
198 |
+
value=np.sum(mla_report["optimized_onnx"]),
|
199 |
+
delta=int(
|
200 |
+
np.sum(mla_report["optimized_onnx"])
|
201 |
+
- np.sum(prev_mla_report["optimized_onnx"])
|
202 |
+
),
|
203 |
+
)
|
204 |
+
if selected_test_type == "daily":
|
205 |
+
with model_details[2]:
|
206 |
+
detailed_progress_list(mla_report, prev_mla_report, "optimized_onnx")
|
207 |
+
|
208 |
+
kpi[3].metric(
|
209 |
+
label="All ops supported",
|
210 |
+
value=np.sum(mla_report["all_ops_supported"]),
|
211 |
+
delta=int(
|
212 |
+
np.sum(mla_report["all_ops_supported"])
|
213 |
+
- np.sum(prev_mla_report["all_ops_supported"])
|
214 |
+
),
|
215 |
+
)
|
216 |
+
if selected_test_type == "daily":
|
217 |
+
with model_details[3]:
|
218 |
+
detailed_progress_list(mla_report, prev_mla_report, "all_ops_supported")
|
219 |
+
|
220 |
+
kpi[4].metric(
|
221 |
+
label="Converts to FP16",
|
222 |
+
value=np.sum(mla_report["fp16_onnx"]),
|
223 |
+
delta=int(
|
224 |
+
np.sum(mla_report["fp16_onnx"]) - np.sum(prev_mla_report["fp16_onnx"])
|
225 |
+
),
|
226 |
+
)
|
227 |
+
if selected_test_type == "daily":
|
228 |
+
with model_details[4]:
|
229 |
+
detailed_progress_list(mla_report, prev_mla_report, "fp16_onnx")
|
230 |
+
|
231 |
+
kpi[5].metric(
|
232 |
+
label="Compiles",
|
233 |
+
value=np.sum(mla_report["compiles"]),
|
234 |
+
delta=int(np.sum(mla_report["compiles"]) - np.sum(prev_mla_report["compiles"])),
|
235 |
+
)
|
236 |
+
if selected_test_type == "daily":
|
237 |
+
with model_details[5]:
|
238 |
+
detailed_progress_list(mla_report, prev_mla_report, "compiles")
|
239 |
+
|
240 |
+
kpi[6].metric(
|
241 |
+
label="Assembles",
|
242 |
+
value=np.sum(mla_report["assembles"]),
|
243 |
+
delta=int(
|
244 |
+
np.sum(mla_report["assembles"]) - np.sum(prev_mla_report["assembles"])
|
245 |
+
),
|
246 |
+
)
|
247 |
+
if selected_test_type == "daily":
|
248 |
+
with model_details[6]:
|
249 |
+
detailed_progress_list(mla_report, prev_mla_report, "assembles")
|
250 |
+
|
251 |
+
cols = st.columns(2)
|
252 |
+
with cols[0]:
|
253 |
+
|
254 |
+
compiler_errors = mla_report[mla_report["compiler_error"] != "-"][
|
255 |
+
"compiler_error"
|
256 |
+
]
|
257 |
+
compiler_errors = Counter(compiler_errors)
|
258 |
+
st.markdown("""#### Top compiler issues""")
|
259 |
+
if len(compiler_errors) > 0:
|
260 |
+
compiler_errors = pd.DataFrame.from_dict(
|
261 |
+
compiler_errors, orient="index"
|
262 |
+
).reset_index()
|
263 |
+
compiler_errors = compiler_errors.set_axis(
|
264 |
+
["error", "count"], axis=1, inplace=False
|
265 |
+
)
|
266 |
+
|
267 |
+
fig = px.bar(
|
268 |
+
compiler_errors, x="count", y="error", orientation="h", height=400
|
269 |
+
)
|
270 |
+
st.plotly_chart(fig, use_container_width=True)
|
271 |
+
else:
|
272 |
+
st.markdown("""No compiler errors found :tada:""")
|
273 |
+
|
274 |
+
with cols[1]:
|
275 |
+
# Add parameters histogram
|
276 |
+
all_models = [float(x) / 1000000 for x in mla_report["params"] if x != "-"]
|
277 |
+
|
278 |
+
assembled_models = mla_report[mla_report["assembles"] == True]
|
279 |
+
assembled_models = [
|
280 |
+
float(x) / 1000000 for x in assembled_models["params"] if x != "-"
|
281 |
+
]
|
282 |
+
hist_data = []
|
283 |
+
group_labels = []
|
284 |
+
if all_models != []:
|
285 |
+
hist_data.append(all_models)
|
286 |
+
group_labels.append("Models we tried compiling")
|
287 |
+
|
288 |
+
if assembled_models != []:
|
289 |
+
hist_data.append(assembled_models)
|
290 |
+
group_labels.append("Assembled models")
|
291 |
+
|
292 |
+
st.markdown("""#### Assembled models vs. Parameters (in millions)""")
|
293 |
+
|
294 |
+
if len(assembled_models) > 1:
|
295 |
+
|
296 |
+
fig = ff.create_distplot(
|
297 |
+
hist_data,
|
298 |
+
group_labels,
|
299 |
+
bin_size=[25, 25],
|
300 |
+
histnorm="",
|
301 |
+
)
|
302 |
+
# fig.layout.update(title="Assembled models vs. Parameters (in millions)")
|
303 |
+
fig.layout.update(xaxis_title="Parameters in millions")
|
304 |
+
fig.layout.update(yaxis_title="count")
|
305 |
+
fig.update_xaxes(range=[1, 1000])
|
306 |
+
st.plotly_chart(fig, use_container_width=True)
|
307 |
+
else:
|
308 |
+
st.markdown("""Need at least one assembled model to show this graph 😅""")
|
309 |
+
|
310 |
+
if "tsp_gpu_compute_ratio" in mla_report and "tsp_gpu_e2e_ratio" in mla_report:
|
311 |
+
cols = st.columns(2)
|
312 |
+
with cols[0]:
|
313 |
+
# GPU Acceleration plot
|
314 |
+
st.markdown("""#### Speedup of GroqChip™ compared to A100 GPUs""")
|
315 |
+
|
316 |
+
# Prepare data
|
317 |
+
df = mla_report[
|
318 |
+
["model_name", "tsp_gpu_compute_ratio", "tsp_gpu_e2e_ratio"]
|
319 |
+
]
|
320 |
+
df = df.sort_values(by=["model_name"])
|
321 |
+
df = df[(df.tsp_gpu_compute_ratio != "-")]
|
322 |
+
df = df[(df.tsp_gpu_e2e_ratio != "-")]
|
323 |
+
df["tsp_gpu_compute_ratio"] = df["tsp_gpu_compute_ratio"].astype(float)
|
324 |
+
df["tsp_gpu_e2e_ratio"] = df["tsp_gpu_e2e_ratio"].astype(float)
|
325 |
+
|
326 |
+
data = [
|
327 |
+
go.Bar(
|
328 |
+
x=df["model_name"],
|
329 |
+
y=df["tsp_gpu_compute_ratio"],
|
330 |
+
name="Compute only",
|
331 |
+
),
|
332 |
+
go.Bar(
|
333 |
+
x=df["model_name"],
|
334 |
+
y=df["tsp_gpu_e2e_ratio"],
|
335 |
+
name="Compute + estimated I/O",
|
336 |
+
),
|
337 |
+
]
|
338 |
+
|
339 |
+
layout = go.Layout(
|
340 |
+
barmode="overlay",
|
341 |
+
yaxis_title="Speedup compared to A100 GPU",
|
342 |
+
colorway=colorway,
|
343 |
+
)
|
344 |
+
|
345 |
+
fig = dict(data=data, layout=layout)
|
346 |
+
st.plotly_chart(fig, use_container_width=True)
|
347 |
+
|
348 |
+
st.markdown(
|
349 |
+
"<sup>*</sup>Estimated I/O does NOT include delays caused by Groq's runtime.",
|
350 |
+
unsafe_allow_html=True,
|
351 |
+
)
|
352 |
+
|
353 |
+
with cols[1]:
|
354 |
+
# Show stats
|
355 |
+
st.markdown(
|
356 |
+
f"""<br><br><br><br><br><br>
|
357 |
+
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute only:</p>
|
358 |
+
<p style="font-family:sans-serif; color:#3366cc; font-size: 26px;text-align: center;"> {round(df["tsp_gpu_compute_ratio"].mean(),2)}x</p>
|
359 |
+
<p style="font-family:sans-serif; color:#3366cc; font-size: 20px;text-align: center;"> min {round(df["tsp_gpu_compute_ratio"].min(),2)}x; max {round(df["tsp_gpu_compute_ratio"].max(),2)}x</p>
|
360 |
+
<br><br>
|
361 |
+
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute + estimated I/O<sup>*</sup>:</p>
|
362 |
+
<p style="font-family:sans-serif; color:#FF7F0E; font-size: 26px;text-align: center;"> {round(df["tsp_gpu_e2e_ratio"].mean(),2)}x</p>
|
363 |
+
<p style="font-family:sans-serif; color:#FF7F0E; font-size: 20px;text-align: center;"> min {round(df["tsp_gpu_e2e_ratio"].min(),2)}x; max {round(df["tsp_gpu_e2e_ratio"].max(),2)}x</p>""",
|
364 |
+
unsafe_allow_html=True,
|
365 |
+
)
|
366 |
+
|
367 |
+
st.markdown("### Detailed Data View")
|
368 |
+
st.markdown(
|
369 |
+
"**Model selection**: All workloads were obtained from models cards available at huggingface.co/models. Input shapes corresponds exactly to those used by the Huggingface model cards. Some of those input shapes might be small, causing the compilation process to be easier than when reasonably-sized input shapes are used.",
|
370 |
+
unsafe_allow_html=True,
|
371 |
+
)
|
372 |
+
model_name = st.text_input("", placeholder="Filter model by name")
|
373 |
+
if model_name != "":
|
374 |
+
mla_report = mla_report[[model_name in x for x in mla_report["model_name"]]]
|
375 |
+
|
376 |
+
# Select which columns to show
|
377 |
+
selected_cols = list(mla_report.columns)
|
378 |
+
# remove_cols = (
|
379 |
+
# "tsp_e2e_latency",
|
380 |
+
# "gpu_e2e_latency",
|
381 |
+
# "tsp_gpu_e2e_ratio",
|
382 |
+
# )
|
383 |
+
# for item in remove_cols:
|
384 |
+
# if item in selected_cols:
|
385 |
+
# selected_cols.remove(item)
|
386 |
+
st.dataframe(
|
387 |
+
mla_report[selected_cols], height=min((len(mla_report) + 1) * 35, 35 * 21)
|
388 |
+
)
|
reports/daily/2023-01-01.csv
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name,author,class,downloads,base_onnx,optimized_onnx,all_ops_supported,fp16_onnx,compiles,assembles,params,chips_used,hash,license,task,model_type,cycles,tsp_compute_latency,gpu_compute_latency,tsp_gpu_compute_ratio,tsp_estimated_e2e_latency,gpu_e2e_latency,tsp_gpu_e2e_ratio,compiler_error,export_time,optimize_onnx_time,check_compatibility_time,fp16_conversion_time,compile_time,assemble_time,compiler_ram_GB
|
2 |
+
ldm-text2im-large-256,CompVis,LDMBertModel,2736,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,542895638,0,5a193210,apache-2.0,Text-to-Image,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
3 |
+
ldm-text2im-large-256,CompVis,UNet2DConditionModel,2736,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,872305830,0,d4c354d4,apache-2.0,Text-to-Image,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
4 |
+
stable-diffusion-v1-4,CompVis,UNet2DConditionModel,933179,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,859526310,0,8d97aa42,creativeml-openrail-m,Text-to-Image,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
5 |
+
stable-diffusion-v1-4,CompVis,CLIPTextModel,933179,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,123066514,0,d312ecd1,creativeml-openrail-m,Text-to-Image,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
6 |
+
deeplabv3-mobilevit-small,apple,MobileViTForSemanticSegmentation,623,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,6351055,0,5621d1d8,other,Image Segmentation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
7 |
+
deeplabv3-mobilevit-xx-small,apple,MobileViTForSemanticSegmentation,296,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,1851719,0,535af098,other,Image Segmentation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
8 |
+
mobilevit-small,apple,MobileViTForImageClassification,2156,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,5572645,0,14ad46bb,other,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
9 |
+
mobilevit-xx-small,apple,MobileViTForImageClassification,347,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,1270109,0,6ced4e0a,other,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
10 |
+
bart-base,facebook,BartModel,4287565,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,137857028,0,ccd3382a,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
11 |
+
bart-large,facebook,BartModel,523031,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,404206966,0,cb0751ce,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
12 |
+
contriever-msmarco,facebook,BertModel,640510,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,109112174,0,d59172a2,-,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
13 |
+
contriever,facebook,BertModel,11989,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,109112174,0,d59172a2,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
14 |
+
convnext-base-224,facebook,ConvNextForImageClassification,1195,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,88591654,0,7ab00a65,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
15 |
+
convnext-base-384,facebook,ConvNextForImageClassification,503,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,88591654,0,7ab00a65,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
16 |
+
convnext-large-224-22k-1k,facebook,ConvNextForImageClassification,532,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,197767526,0,fb35dbce,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
17 |
+
convnext-small-224,facebook,ConvNextForImageClassification,1084,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,50223878,0,87bede4e,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
18 |
+
convnext-tiny-224,facebook,ConvNextForImageClassification,7627,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,28589228,0,753bc122,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
19 |
+
convnext-xlarge-224-22k,facebook,ConvNextForImageClassification,950,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,392900367,0,8bc87977,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
20 |
+
convnext-xlarge-384-22k-1k,facebook,ConvNextForImageClassification,1487,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,350197158,0,b07800d5,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
21 |
+
data2vec-vision-base-ft1k,facebook,Data2VecVisionForImageClassification,896,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,92014184,0,69cd45e4,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
22 |
+
deit-base-distilled-patch16-224,facebook,DeiTForImageClassificationWithTeacher,3896,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,87338303,0,d5e17c06,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
23 |
+
deit-base-distilled-patch16-384,facebook,DeiTForImageClassificationWithTeacher,1089,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,87630143,0,d5e17c06,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
24 |
+
deit-base-patch16-224,facebook,ViTForImageClassification,1627,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86567765,0,8fa842d1,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
25 |
+
deit-base-patch16-384,facebook,ViTForImageClassification,249,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86859605,0,8fa842d1,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
26 |
+
deit-small-distilled-patch16-224,facebook,DeiTForImageClassificationWithTeacher,4774,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,22436543,0,39d02956,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
27 |
+
deit-small-patch16-224,facebook,ViTForImageClassification,2221,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,22050773,0,75dcf183,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
28 |
+
deit-tiny-distilled-patch16-224,facebook,DeiTForImageClassificationWithTeacher,554,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,5910911,0,a22960fb,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
29 |
+
deit-tiny-patch16-224,facebook,ViTForImageClassification,1605,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,5717525,0,4f7bba18,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
30 |
+
dino-vitb16,facebook,ViTModel,5486,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86389357,0,993623dd,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
31 |
+
dino-vitb8,facebook,ViTModel,631,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86398573,0,e9f1512a,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
32 |
+
dino-vits16,facebook,ViTModel,352,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,21813613,0,257fd398,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
33 |
+
dino-vits8,facebook,ViTModel,291,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,21818221,0,825fd897,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
34 |
+
flava-full,facebook,FlavaModel,5282,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,239843835,0,f54edd4f,bsd-3-clause,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
35 |
+
levit-128S,facebook,LevitForImageClassificationWithTeacher,1379,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,75ce3c61,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
36 |
+
maskformer-swin-base-ade,facebook,MaskFormerForInstanceSegmentation,915,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,119679086,0,435797ea,apache-2.0,Image Segmentation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
37 |
+
maskformer-swin-base-coco,facebook,MaskFormerForInstanceSegmentation,2485,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,119679086,0,435797ea,apache-2.0,Image Segmentation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
38 |
+
maskformer-swin-small-coco,facebook,MaskFormerForInstanceSegmentation,644,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,119679086,0,435797ea,apache-2.0,Image Segmentation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
39 |
+
maskformer-swin-tiny-ade,facebook,MaskFormerForInstanceSegmentation,957,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,119679086,0,435797ea,apache-2.0,Image Segmentation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
40 |
+
mbart-large-50,facebook,MBartForConditionalGeneration,750716,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,865117055,0,cc870534,mit,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
41 |
+
opt-125m,facebook,OPTForCausalLM,228909,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,163848370,0,6cd79533,other,Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
42 |
+
opt-350m,facebook,OPTForCausalLM,108185,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,356887800,0,ad0ef94a,other,Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
43 |
+
regnet-y-040,facebook,RegNetForImageClassification,694,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,20615520,0,e61a4c01,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
44 |
+
vit-mae-base,facebook,ViTMAEForPreTraining,11994,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,e6e74056,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
45 |
+
vit-mae-large,facebook,ViTMAEForPreTraining,5655,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,affe8660,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
46 |
+
xlm-roberta-xl,facebook,XLMRobertaXLForMaskedLM,958,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,4125012789,0,24c40de1,mit,Fill-Mask,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
47 |
+
bert2bert L-24 wmt de en,google,BertGenerationEncoder,1524,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,335040717,0,d49341c1,apache-2.0,Translation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
48 |
+
byt5-base,google,T5ForConditionalGeneration,3256,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,581780174,0,e9c73447,apache-2.0,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
49 |
+
byt5-large,google,T5ForConditionalGeneration,780,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,1228479606,0,1ca21db0,apache-2.0,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
50 |
+
byt5-small,google,T5ForConditionalGeneration,41266,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,299685500,0,2.83E+14,apache-2.0,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
51 |
+
canine-c,google,CanineModel,1775,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,51c875ff,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
52 |
+
canine-s,google,CanineModel,10734,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,51c875ff,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
53 |
+
ddpm-celebahq-256,google,UNet2DModel,1827,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,113662494,0,a5e0de9e,apache-2.0,Unconditional Image Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
54 |
+
ddpm-cifar10-32,google,UNet2DModel,1945,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,35742306,0,31e11b2b,apache-2.0,Unconditional Image Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
55 |
+
electra-base-discriminator,google,ElectraForPreTraining,179212,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,109105394,0,8a65da14,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
56 |
+
electra-base-generator,google,ElectraForMaskedLM,30181,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,56802220,0,55ef183d,apache-2.0,Fill-Mask,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
57 |
+
electra-large-discriminator,google,ElectraForPreTraining,46237,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,334639574,0,b3e531eb,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
58 |
+
electra-small-discriminator,google,ElectraForPreTraining,446832,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,13486322,0,70bef88d,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
59 |
+
fnet-base,google,FNetForMaskedLM,178925,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,ce0cff8a,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
60 |
+
mobilebert-uncased,google,MobileBertForMaskedLM,48600,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,40247413,0,4295f30f,apache-2.0,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
61 |
+
owlvit-base-patch16,google,OwlViTForObjectDetection,2261,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,2a2d9322,apache-2.0,Object Detection,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
62 |
+
owlvit-base-patch32,google,OwlViTForObjectDetection,10221,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,302ff610,apache-2.0,Object Detection,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
63 |
+
owlvit-large-patch14,google,OwlViTForObjectDetection,2642,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,-,0,2565922f,apache-2.0,Object Detection,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
64 |
+
t5-small-ssm-nq,google,Linear,2505,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,196608,0,920c0322,apache-2.0,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
65 |
+
vit-base-patch16-224-in21k,google,ViTModel,614852,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86389357,0,993623dd,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
66 |
+
vit-base-patch16-224,google,ViTForImageClassification,1305984,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86567765,0,8fa842d1,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
67 |
+
vit-base-patch16-384,google,ViTForImageClassification,7771,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86859605,0,8fa842d1,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
68 |
+
vit-base-patch32-224-in21k,google,ViTModel,3348,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,88045933,0,307dc71a,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
69 |
+
vit-base-patch32-384,google,ViTForImageClassification,1806,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,88297301,0,da31f94d,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
70 |
+
vit-huge-patch14-224-in21k,google,ViTModel,927,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,632404749,0,e6073acb,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
71 |
+
vit-large-patch16-224-in21k,google,ViTModel,642,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,304351437,0,afcb2f64,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
72 |
+
vit-large-patch16-224,google,ViTForImageClassification,607,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,304326837,0,62c9365b,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
73 |
+
vit-large-patch16-384,google,ViTForImageClassification,684,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,304715957,0,62c9365b,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
74 |
+
vit-large-patch32-224-in21k,google,ViTModel,882,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86389357,0,993623dd,apache-2.0,Feature Extraction,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
75 |
+
vit-large-patch32-384,google,ViTForImageClassification,3062,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,306632885,0,05fbb6ac,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
76 |
+
beit-base-patch16-224-pt22k-ft22k,microsoft,BeitForImageClassification,13214,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,108040913,0,17293472,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
77 |
+
beit-base-patch16-224-pt22k,microsoft,BeitForMaskedImageModeling,1999,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,92422044,0,76e338ee,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
78 |
+
beit-base-patch16-224,microsoft,BeitForImageClassification,4097,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,92014184,0,cd2ea289,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
79 |
+
beit-base-patch16-384,microsoft,BeitForImageClassification,2193,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,134367464,0,cd2ea289,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
80 |
+
beit-large-patch16-224-pt22k-ft22k,microsoft,BeitForImageClassification,384,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,340414369,0,16db572d,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
81 |
+
beit-large-patch16-224-pt22k,microsoft,BeitForMaskedImageModeling,542,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,312142432,0,de648727,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
82 |
+
beit-large-patch16-384,microsoft,BeitForImageClassification,252,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,431994424,0,b7efd875,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
83 |
+
beit-large-patch16-512,microsoft,BeitForImageClassification,2832,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,707589688,0,b7efd875,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
84 |
+
codebert-base-mlm,microsoft,RobertaForMaskedLM,273375,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,163311822,0,bb3e7c3b,-,Fill-Mask,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
85 |
+
cvt-13,microsoft,CvtForImageClassification,7775,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,19984994,0,7d8bd070,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
86 |
+
prophetnet-large-uncased,microsoft,ProphetNetForConditionalGeneration,5629,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,421677051,0,dd2215e4,-,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
87 |
+
resnet-101,microsoft,ResNetForImageClassification,303,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,44496488,0,c25a8655,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
88 |
+
resnet-152,microsoft,ResNetForImageClassification,303,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,60117096,0,432f1b45,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
89 |
+
resnet-18,microsoft,ResNetForImageClassification,677,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,11684712,0,4fa34148,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
90 |
+
resnet-34,microsoft,ResNetForImageClassification,288,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,21789160,0,34b5e579,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
91 |
+
resnet-50,microsoft,ResNetForImageClassification,113970,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,25530472,0,649b58e4,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
92 |
+
swin-base-patch4-window12-384-in22k,microsoft,SwinForImageClassification,1546,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,119270870,0,00040b7f,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
93 |
+
swin-base-patch4-window12-384,microsoft,SwinForImageClassification,381,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,97908845,0,4ae8ed0d,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
94 |
+
swin-base-patch4-window7-224-in22k,microsoft,SwinForImageClassification,6434,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,110250050,0,00040b7f,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
95 |
+
swin-base-patch4-window7-224,microsoft,SwinForImageClassification,1783,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,88888025,0,4ae8ed0d,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
96 |
+
swin-large-patch4-window12-384-in22k,microsoft,SwinForImageClassification,26264,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,242572310,0,c296f66d,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
97 |
+
swin-large-patch4-window7-224-in22k,microsoft,SwinForImageClassification,244,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,230104510,0,c296f66d,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
98 |
+
swin-large-patch4-window7-224,microsoft,SwinForImageClassification,8406,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,198071893,0,cb300b56,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
99 |
+
swin-small-patch4-window7-224,microsoft,SwinForImageClassification,562,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,50516251,0,90e0ffd2,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
100 |
+
swin-tiny-patch4-window7-224,microsoft,SwinForImageClassification,7898,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,28818337,0,d403933e,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
101 |
+
swinv2-tiny-patch4-window8-256,microsoft,SwinForImageClassification,1754,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,28771675,0,d403933e,apache-2.0,Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
102 |
+
trocr-base-handwritten,microsoft,ViTModel,6461,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86653549,0,e45f61ed,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
103 |
+
trocr-base-printed,microsoft,ViTModel,18133,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,86653549,0,e45f61ed,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
104 |
+
trocr-large-handwritten,microsoft,ViTModel,1876,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,304666829,0,4b504cc2,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
105 |
+
trocr-large-printed,microsoft,ViTModel,2727,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,304666829,0,4b504cc2,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
106 |
+
trocr-large-str,microsoft,ViTModel,229,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,304666829,0,4b504cc2,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
107 |
+
trocr-small-handwritten,microsoft,DeiTModel,1138,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,21960301,0,5513139b,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
108 |
+
trocr-small-stage1,microsoft,VisionEncoderDecoderModel,585,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,61316403,0,d071f647,-,-,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
109 |
+
xprophetnet-large-wiki100-cased,microsoft,XLMProphetNetForConditionalGeneration,540,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,871333730,0,105cdd91,-,Text2Text Generation,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
110 |
+
clip-vit-base-patch16,openai,CLIPModel,70786,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,149585208,0,5fa6777a,-,Zero-Shot Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
111 |
+
clip-vit-base-patch32,openai,CLIPModel,2330296,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,151241784,0,25380eec,-,Zero-Shot Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|
112 |
+
clip-vit-large-patch14,openai,CLIPModel,11601851,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,427563136,0,d79341f4,-,Zero-Shot Image Classification,pytorch,-,-,-,-,-,-,-,-,,,,,,,
|