Add helper functions
Browse files- streamlit_helpers.py +150 -0
streamlit_helpers.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
from typing import List
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st # pylint: disable=import-error
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
class Collapsable:
|
9 |
+
"""
|
10 |
+
Creates a collapsable text composed of a preamble (clickable section of text)
|
11 |
+
and epilogue (collapsable text).
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, preamble="", epilogue=""):
|
15 |
+
self.preamble = preamble
|
16 |
+
self.epilogue = epilogue
|
17 |
+
self.small_font = 18
|
18 |
+
self.large_font = 18
|
19 |
+
self.sections = []
|
20 |
+
|
21 |
+
def add_section(self, heading, text):
|
22 |
+
# Convert text to bullet points if it is a list
|
23 |
+
if isinstance(text, list):
|
24 |
+
text = (
|
25 |
+
"<ul>"
|
26 |
+
+ "".join(
|
27 |
+
[
|
28 |
+
f'<li style="font-size:{self.small_font}px;" align="justify">{x}</li>'
|
29 |
+
for x in text
|
30 |
+
]
|
31 |
+
)
|
32 |
+
+ "</ul>"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Append section
|
36 |
+
self.sections.append((heading, text))
|
37 |
+
|
38 |
+
def deploy(self):
|
39 |
+
|
40 |
+
secs = "".join(
|
41 |
+
[
|
42 |
+
(
|
43 |
+
"<details>"
|
44 |
+
f"<summary style='font-size:{self.large_font}px;'>{heading}</summary>"
|
45 |
+
f"<blockquote style='font-size:{self.small_font}px;max-width: 80%;'"
|
46 |
+
f"align='justify'>{text}</details>"
|
47 |
+
)
|
48 |
+
for heading, text in self.sections
|
49 |
+
]
|
50 |
+
)
|
51 |
+
collapsable_sec = f"""
|
52 |
+
<ol>
|
53 |
+
{self.preamble}
|
54 |
+
{secs}
|
55 |
+
{self.epilogue}
|
56 |
+
</ol>
|
57 |
+
"""
|
58 |
+
st.markdown(collapsable_sec, unsafe_allow_html=True)
|
59 |
+
|
60 |
+
|
61 |
+
def add_filter(
|
62 |
+
data_frame_list: List[pd.DataFrame],
|
63 |
+
name: str,
|
64 |
+
label: str,
|
65 |
+
options: List[str] = None,
|
66 |
+
num_cols: int = 1,
|
67 |
+
last_is_others: bool = True,
|
68 |
+
):
|
69 |
+
"""
|
70 |
+
Creates a filter on the side bar using checkboxes
|
71 |
+
"""
|
72 |
+
|
73 |
+
# Get list of all options and return if no options are available
|
74 |
+
all_options = set(data_frame_list[-1][label])
|
75 |
+
if "-" in all_options:
|
76 |
+
all_options.remove("-")
|
77 |
+
if len(all_options) == 0:
|
78 |
+
return data_frame_list
|
79 |
+
|
80 |
+
st.markdown(f"#### {name}")
|
81 |
+
|
82 |
+
# Create list of options if selectable options are not provided
|
83 |
+
if options is None:
|
84 |
+
options_dict = Counter(data_frame_list[-1][label])
|
85 |
+
sorted_options = sorted(options_dict, key=options_dict.get, reverse=True)
|
86 |
+
if "-" in sorted_options:
|
87 |
+
sorted_options.remove("-")
|
88 |
+
if len(sorted_options) > 8:
|
89 |
+
options = list(sorted_options[:7]) + ["others"]
|
90 |
+
last_is_others = True
|
91 |
+
else:
|
92 |
+
options = list(sorted_options)
|
93 |
+
last_is_others = False
|
94 |
+
|
95 |
+
cols = st.columns(num_cols)
|
96 |
+
instantiated_checkbox = []
|
97 |
+
for idx in range(len(options)):
|
98 |
+
with cols[idx % num_cols]:
|
99 |
+
instantiated_checkbox.append(
|
100 |
+
st.checkbox(options[idx], False, key=f"{label}_{options[idx]}")
|
101 |
+
)
|
102 |
+
|
103 |
+
selected_options = [
|
104 |
+
options[idx] for idx, checked in enumerate(instantiated_checkbox) if checked
|
105 |
+
]
|
106 |
+
|
107 |
+
# The last checkbox will always correspond to "other"
|
108 |
+
if instantiated_checkbox[-1] and last_is_others:
|
109 |
+
selected_options = selected_options[:-1]
|
110 |
+
other_options = [x for x in all_options if x not in options]
|
111 |
+
selected_options = set(selected_options + other_options)
|
112 |
+
|
113 |
+
if len(selected_options) > 0:
|
114 |
+
for idx, _ in enumerate(data_frame_list):
|
115 |
+
data_frame_list[idx] = data_frame_list[idx][
|
116 |
+
[
|
117 |
+
any([x == model_entry for x in selected_options])
|
118 |
+
for model_entry in data_frame_list[idx][label]
|
119 |
+
]
|
120 |
+
]
|
121 |
+
return data_frame_list
|
122 |
+
|
123 |
+
|
124 |
+
def slider_filter(
|
125 |
+
data_frame_list: List[pd.DataFrame],
|
126 |
+
title: str,
|
127 |
+
filter_by: str,
|
128 |
+
max_val: int = 1000,
|
129 |
+
):
|
130 |
+
"""
|
131 |
+
Creates slider to filter dataframes according to a given label.
|
132 |
+
label must be numeric. Values are in millions.
|
133 |
+
"""
|
134 |
+
|
135 |
+
start_val, end_val = st.select_slider(
|
136 |
+
title,
|
137 |
+
options=[str(x) for x in np.arange(0, max_val + 1, 10, dtype=int)],
|
138 |
+
value=("0", str(max_val)),
|
139 |
+
)
|
140 |
+
|
141 |
+
for idx in range(len(data_frame_list)):
|
142 |
+
data_frame_list[idx] = data_frame_list[idx][
|
143 |
+
[
|
144 |
+
int(model_entry) >= int(start_val) * 1000000
|
145 |
+
and int(model_entry) <= int(end_val) * 1000000
|
146 |
+
for model_entry in data_frame_list[idx][filter_by]
|
147 |
+
]
|
148 |
+
]
|
149 |
+
|
150 |
+
return data_frame_list
|