Case-Study-1 / app.py
Julian-Hans's picture
renamed poc_app.py to app.py, clean up for app logic, implemented function to yield intermediate results, added generation length parameter to config, changed path handling in app.py
ddf2ccc
raw
history blame
4.65 kB
# external imports
import time
import uuid
import gradio as gr
# local imports
from blip_image_caption_large import Blip_Image_Caption_Large
from phi3_mini_4k_instruct import Phi3_Mini_4k_Instruct
from musicgen_small import Musicgen_Small
import config
class Image_To_Music:
def __init__(self):
self.image_caption_model = Blip_Image_Caption_Large()
self.text_generation_model = Phi3_Mini_4k_Instruct()
self.music_generation_model = Musicgen_Small()
self.image_path = None
self.generated_caption = None
self.generated_description = None
self.audio_path = config.AUDIO_DIR + str(uuid.uuid4()) + ".wav"
self.caption_generation_duration = -1
self.description_generation_duration = -1
self.music_generation_duration = -1
def caption_image(self, image_path):
caption_start_time = time.time()
self.image_path = image_path
self.generated_caption = self.image_caption_model.caption_image_local_pipeline(self.image_path)[0]["generated_text"]
self.caption_generation_duration = time.time() - caption_start_time
return self.generated_caption
def generate_description(self):
description_start_time = time.time()
messages = [
{"role": "system", "content": "You are an image caption to song description converter with a deep understanding of Music and Art. You are given the caption of an image. Your task is to generate a textual description of a musical piece that fits the caption. The description should be detailed and vivid, and should include the genre, mood, instruments, tempo, and other relevant information about the music. You should also use your knowledge of art and visual aesthetics to create a musical piece that complements the image. Only output the description of the music, without any explanation or introduction. Be concise."},
{"role": "user", "content": self.generated_caption},
]
self.generated_description = self.text_generation_model.generate_text_local_pipeline(messages)[-1]['generated_text'][-1]['content']
self.description_generation_duration = time.time() - description_start_time
return self.generated_description
def generate_music(self):
music_start_time = time.time()
self.music_generation_model.generate_music_local_pipeline(self.generated_description, self.audio_path)
self.music_generation_duration = time.time() - music_start_time
return self.audio_path
def get_durations(self):
return f"Caption Generation Time: {self.caption_generation_duration:.2f} seconds\nDescription Generation Time: {self.description_generation_duration:.2f} seconds\nMusic Generation Time: {self.music_generation_duration:.2f} seconds\nTotal Time: {self.caption_generation_duration + self.description_generation_duration + self.music_generation_duration:.2f} seconds"
def run_yield(self, image_path):
self.caption_image(image_path)
yield [self.generated_caption, None, None, None]
self.generate_description()
yield [self.generated_caption, self.generated_description, None, None]
self.generate_music()
yield [self.generated_caption, self.generated_description, self.audio_path, None]
return [self.generated_caption, self.generated_description, self.audio_path,self.get_durations()]
def run(self, image_path):
self.caption_image(image_path)
self.generate_description()
self.generate_music()
return [self.generated_caption, self.generated_description, self.audio_path, self.get_durations()]
# Gradio UI
def gradio():
# Define Gradio Interface, information from (https://www.gradio.app/docs/chatinterface)
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'> ⛺ Image to Music Generator 🎼</h1>")
image_input = gr.Image(type="filepath", label="Upload Image")
with gr.Row():
caption_output = gr.Textbox(label="Image Caption")
music_description_output = gr.Textbox(label="Music Description")
durations = gr.Textbox(label="Processing Times", interactive=False, placeholder="Time statistics will appear here")
music_output = gr.Audio(label="Generated Music")
# Button to trigger the process
generate_button = gr.Button("Generate Music")
itm = Image_To_Music()
generate_button.click(fn=itm.run, inputs=image_input, outputs=[caption_output, music_description_output, music_output, durations])
# Launch Gradio app
demo.launch()
gradio()