language / app.py
martenb's picture
Updated app at mån 4 dec 2023 08:34:07 CET
421e18c
raw
history blame
498 Bytes
from transformers import pipeline
import gradio as gr
pipe = pipeline("automatic-speech-recognition", model="GroupSix/whisper-small-sv")
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(), # Removed the 'source' and 'type' arguments
outputs="text",
title="Whisper Small Swedish",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()