GTAV_SOVITS / app.py
Katock's picture
add tracey2
9ebe811
import argparse
import logging
import os
import re
import gradio.processing_utils as gr_pu
import gradio as gr
import librosa
import numpy as np
import soundfile
from scipy.io import wavfile
import tempfile
import edge_tts
import utils
from inference.infer_tool import Svc
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
sampling_rate = 44100
tts_voice = {
"中文男": "zh-CN-YunxiNeural",
"中文女": "zh-CN-XiaoyiNeural",
"英文男": "en-US-EricNeural",
"英文女": "en-US-AnaNeural"
}
hubert_dict = {
"vec768l12": utils.get_speech_encoder("vec768l12", device="cpu"),
}
svc_models = {
"gta5_1": Svc(fr"models/gta5_1/gta5_1.pth", f"models/gta5_1/gta5_1.json", device="cpu"),
"gta5_2": Svc(fr"models/gta5_2/gta5_2.pth", f"models/gta5_2/gta5_2.json", device="cpu"),
'tracey': Svc(fr"models/tracey/tracey.pth", f"models/tracey/tracey.json", device="cpu")
}
spk2model = {
"franklin": "gta5_1",
"michael": "gta5_1",
"trevor": "gta5_1",
"amanda": "gta5_2",
'jimmy': 'gta5_2',
'lamar': 'gta5_2',
'tracey': 'tracey',
}
def create_fn(spk):
def svc_fn(input_audio, vc_transform, auto_f0, f0p):
if input_audio is None:
return 0, None
sr, audio = input_audio
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
temp_path = "temp.wav"
soundfile.write(temp_path, audio, sampling_rate, format="wav")
model = svc_models[spk2model[spk]]
model.hubert_model = hubert_dict[model.speech_encoder]
out_audio = model.slice_inference(raw_audio_path=temp_path,
spk=spk,
slice_db=-40,
cluster_infer_ratio=0,
noice_scale=0.4,
clip_seconds=10,
tran=vc_transform,
f0_predictor=f0p,
auto_predict_f0=auto_f0)
model.clear_empty()
os.remove(temp_path)
return sampling_rate, out_audio
async def tts_fn(input_text, gender, tts_rate, vc_transform, auto_f0, f0p):
if input_text == '':
return 0, None
input_text = re.sub(r"[\n\,\(\) ]", "", input_text)
voice = tts_voice[gender]
ratestr = "+{:.0%}".format(tts_rate) if tts_rate >= 0 else "{:.0%}".format(tts_rate)
communicate = edge_tts.Communicate(text=input_text, voice=voice, rate=ratestr)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
temp_path = tmp_file.name
await communicate.save(temp_path)
audio, sr = librosa.load(temp_path)
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
os.remove(temp_path)
temp_path = "temp.wav"
wavfile.write(temp_path, sampling_rate, (audio * np.iinfo(np.int16).max).astype(np.int16))
sr, audio = gr_pu.audio_from_file(temp_path)
input_audio = (sampling_rate, audio)
return svc_fn(input_audio, vc_transform, auto_f0, f0p)
return svc_fn, tts_fn
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--api', action="store_true", default=False)
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
args = parser.parse_args()
models = []
for name in spk2model:
cover = f"img/{name}.jpg" if os.path.exists(f"img/{name}.jpg") else f"img/{name}.png"
models.append((name, cover, create_fn(name)))
with gr.Blocks() as app:
gr.Markdown(
"""
# <center> GTAV角色语音生成
## <center> 模型作者:B站[Cyber蝈蝈总](https://space.bilibili.com/37706580)
#### <center> 传送门:[GTAVC](https://huggingface.shushu.icu/spaces/GroveStreet/GTAVC_SOVITS);[GTASA](https://huggingface.shushu.icu/spaces/GroveStreet/GTA_SOVITS)
<center> 使用此资源创作的作品请标出处
"""
)
with gr.Tabs():
for (name, cover, (svc_fn, tts_fn)) in models:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
vc_transform = gr.Number(label="音高调整 (正负半音,12为1个八度)", value=0)
f0_predictor = gr.Radio(label="f0预测器 (推荐rmvpe)",
choices=['crepe', 'harvest', 'rmvpe'], value='rmvpe')
auto_f0 = gr.Checkbox(label="自动音高预测 (文本转语音或讲话可选,会导致唱歌跑调)",
value=False)
with gr.Tabs():
with gr.TabItem('语音转语音'):
svc_input = gr.Audio(
label="上传干声 (已支持无限长音频,处理时间约为原音频时间的5倍)")
svc_submit = gr.Button("生成", variant="primary")
with gr.TabItem('文本转语音'):
tts_input = gr.Textbox(label='说话内容', value='',
placeholder='已支持无限长内容,处理时间约为说完原内容时间的5倍')
with gr.Row():
gender = gr.Radio(label='说话人性别 (男音调低,女音调高)', value='中文男',
choices=['中文男', '中文女', '英文男', '英文女'])
tts_rate = gr.Number(label='语速 (正负, 单位百分比)', value=0)
tts_submit = gr.Button("生成", variant="primary")
with gr.Column():
gr.Image(cover, height=400, width=400)
vc_output = gr.Audio(label="输出音频")
svc_submit.click(svc_fn, [svc_input, vc_transform, auto_f0, f0_predictor], vc_output)
tts_submit.click(tts_fn, [tts_input, gender, tts_rate, vc_transform, auto_f0, f0_predictor],
vc_output)
app.queue(api_open=args.api).launch(share=args.share)