Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
import os
|
5 |
-
from huggingface_hub import login
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
login(token=token)
|
10 |
|
11 |
-
def
|
12 |
-
|
|
|
13 |
model_name = "Guchyos/gemma-2b-elyza-task"
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name
|
15 |
-
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
model_name,
|
18 |
-
|
19 |
-
|
20 |
-
load_in_4bit=False, # 4bit量子化を無効化
|
21 |
-
use_auth_token=True
|
22 |
)
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
prompt = f"質問: {message}\n\n回答:"
|
25 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
)
|
34 |
|
35 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
return response.replace(prompt, "").strip()
|
@@ -40,25 +38,9 @@ def predict(message, history):
|
|
40 |
|
41 |
demo = gr.ChatInterface(
|
42 |
fn=predict,
|
43 |
-
title="💬 Gemma 2
|
44 |
-
description=""
|
45 |
-
# ELYZA-tasks-100-TV用に最適化された日本語LLMです
|
46 |
-
|
47 |
-
## 使い方
|
48 |
-
- 質問を入力してEnterキーを押してください
|
49 |
-
- 生成には数秒かかります
|
50 |
-
|
51 |
-
## 特徴
|
52 |
-
- CPU対応
|
53 |
-
- 日本語に特化
|
54 |
-
- ELYZA-tasks形式に対応
|
55 |
-
""",
|
56 |
-
examples=[
|
57 |
-
"日本の四季について、それぞれの特徴を説明してください。",
|
58 |
-
"人工知能の発展における倫理的な課題について説明してください。",
|
59 |
-
"東京の主要な観光スポットを3つ挙げて、それぞれ説明してください。"
|
60 |
-
]
|
61 |
)
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
+
model = None
|
6 |
+
tokenizer = None
|
|
|
7 |
|
8 |
+
def load_model():
|
9 |
+
global model, tokenizer
|
10 |
+
if model is None:
|
11 |
model_name = "Guchyos/gemma-2b-elyza-task"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_name,
|
15 |
+
torch_dtype=torch.float32, # float32を使用
|
16 |
+
device_map="cpu"
|
|
|
|
|
17 |
)
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
def predict(message, history):
|
21 |
+
try:
|
22 |
+
model, tokenizer = load_model()
|
23 |
prompt = f"質問: {message}\n\n回答:"
|
24 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
25 |
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model.generate(
|
28 |
+
**inputs,
|
29 |
+
max_new_tokens=128,
|
30 |
+
do_sample=False
|
31 |
+
)
|
|
|
32 |
|
33 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
return response.replace(prompt, "").strip()
|
|
|
38 |
|
39 |
demo = gr.ChatInterface(
|
40 |
fn=predict,
|
41 |
+
title="💬 Gemma 2 for ELYZA-tasks",
|
42 |
+
description="ELYZA-tasks-100-TV用に最適化された日本語LLMです"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
+
demo.launch(share=True)
|