Audio_recog / app.py
Guhanselvam's picture
Update app.py
b272e20 verified
import numpy as np
import soundfile as sf
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import torch
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# Load Hugging Face's Wav2Vec2 model and tokenizer
model_name = "facebook/wav2vec2-large-xlsr-53"
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
def load_audio(file_path):
audio, sample_rate = sf.read(file_path)
return audio
def extract_mfcc_features(audio, sample_rate):
mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
mfccs_scaled = np.mean(mfccs.T, axis=0)
return mfccs_scaled
def predict_emotion(file_path):
audio = load_audio(file_path)
mfcc_features = extract_mfcc_features(audio, 16000) # Adjust sample rate if needed
# Prepare for prediction (just using random sample for this dummy)
encoded_input = tokenizer(audio, sampling_rate=16000, return_tensors="pt", padding=True)
# Make sure to use the correct model input and outputs for emotion prediction
with torch.no_grad():
logits = model(**encoded_input).logits
predicted_ids = torch.argmax(logits, dim=-1)
return tokenizer.decode(predicted_ids[0])
# Example usage of the model
if __name__ == "__main__":
file_name = "path_to_your_audio_file.wav" # Replace with your audio file path
emotion = predict_emotion(file_name)
print(f'Predicted Emotion: {emotion}')